文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估 ChatGPT-4.0 在流行病学研究中的数据分析能力:与 SAS、SPSS 和 R 的对比分析。

Evaluating ChatGPT-4.0's data analytic proficiency in epidemiological studies: A comparative analysis with SAS, SPSS, and R.

机构信息

School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China.

Key Laboratory for Molecular Genetic Mechanisms and Intervention Research, On High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Xizang, China.

出版信息

J Glob Health. 2024 Mar 29;14:04070. doi: 10.7189/jogh.14.04070.


DOI:10.7189/jogh.14.04070
PMID:38547497
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10978058/
Abstract

BACKGROUND: OpenAI's Chat Generative Pre-trained Transformer 4.0 (ChatGPT-4), an emerging artificial intelligence (AI)-based large language model (LLM), has been receiving increasing attention from the medical research community for its innovative 'Data Analyst' feature. We aimed to compare the capabilities of ChatGPT-4 against traditional biostatistical software (i.e. SAS, SPSS, R) in statistically analysing epidemiological research data. METHODS: We used a data set from the China Health and Nutrition Survey, comprising 9317 participants and 29 variables (e.g. gender, age, educational level, marital status, income, occupation, weekly working hours, survival status). Two researchers independently evaluated the data analysis capabilities of GPT-4's 'Data Analyst' feature against SAS, SPSS, and R across three commonly used epidemiological analysis methods: Descriptive statistics, intergroup analysis, and correlation analysis. We used an internally developed evaluation scale to assess and compare the consistency of results, analytical efficiency of coding or operations, user-friendliness, and overall performance between ChatGPT-4, SAS, SPSS, and R. RESULTS: In descriptive statistics, ChatGPT-4 showed high consistency of results, greater analytical efficiency of code or operations, and more intuitive user-friendliness compared to SAS, SPSS, and R. In intergroup comparisons and correlational analyses, despite minor discrepancies in statistical outcomes for certain analysis tasks with SAS, SPSS, and R, ChatGPT-4 maintained high analytical efficiency and exceptional user-friendliness. Thus, employing ChatGPT-4 can significantly lower the operational threshold for conducting epidemiological data analysis while maintaining consistency with traditional biostatistical software's outcome, requiring only specific, clear analysis instructions without any additional operations or code writing. CONCLUSIONS: We found ChatGPT-4 to be a powerful auxiliary tool for statistical analysis in epidemiological research. However, it showed limitations in result consistency and in applying more advanced statistical methods. Therefore, we advocate for the use of ChatGPT-4 in supporting researchers with intermediate experience in data analysis. With AI technologies like LLMs advancing rapidly, their integration with data analysis platforms promises to lower operational barriers, thereby enabling researchers to dedicate greater focus to the nuanced interpretation of analysis results. This development is likely to significantly advance epidemiological and medical research.

摘要

背景:OpenAI 的 Chat Generative Pre-trained Transformer 4.0(ChatGPT-4)是一种新兴的人工智能(AI)大型语言模型(LLM),其创新的“Data Analyst”功能受到医学研究界的越来越多关注。我们旨在比较 ChatGPT-4 与传统生物统计学软件(如 SAS、SPSS、R)在分析流行病学研究数据方面的能力。

方法:我们使用来自中国健康与营养调查(China Health and Nutrition Survey)的数据,其中包括 9317 名参与者和 29 个变量(如性别、年龄、教育程度、婚姻状况、收入、职业、每周工作时间、生存状况)。两名研究人员独立评估了 GPT-4 的“Data Analyst”功能在三种常用流行病学分析方法(描述性统计、组间分析和相关性分析)方面与 SAS、SPSS 和 R 的数据分析能力。我们使用内部开发的评估量表来评估和比较 ChatGPT-4、SAS、SPSS 和 R 之间的结果一致性、编码或操作的分析效率、用户友好性和整体性能。

结果:在描述性统计方面,ChatGPT-4 与 SAS、SPSS 和 R 相比,结果一致性高,编码或操作的分析效率更高,用户友好性更强。在组间比较和相关性分析中,尽管 ChatGPT-4 在某些分析任务的统计结果与 SAS、SPSS 和 R 存在细微差异,但它保持了高的分析效率和出色的用户友好性。因此,使用 ChatGPT-4 可以显著降低进行流行病学数据分析的操作门槛,同时保持与传统生物统计学软件结果的一致性,只需要特定、明确的分析指令,而无需任何额外的操作或代码编写。

结论:我们发现 ChatGPT-4 是一种强大的统计分析辅助工具,适用于流行病学研究。然而,它在结果一致性和应用更高级的统计方法方面存在局限性。因此,我们提倡在支持数据分析经验中等的研究人员方面使用 ChatGPT-4。随着 AI 技术,如大型语言模型的快速发展,它们与数据分析平台的整合有望降低操作障碍,从而使研究人员能够更加专注于分析结果的细微解释。这一发展可能会极大地推动流行病学和医学研究的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f33/10978058/dfe687b6f47d/jogh-14-04070-F1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f33/10978058/dfe687b6f47d/jogh-14-04070-F1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f33/10978058/dfe687b6f47d/jogh-14-04070-F1.jpg

相似文献

[1]
Evaluating ChatGPT-4.0's data analytic proficiency in epidemiological studies: A comparative analysis with SAS, SPSS, and R.

J Glob Health. 2024-3-29

[2]
Evaluating ChatGPT-4's Diagnostic Accuracy: Impact of Visual Data Integration.

JMIR Med Inform. 2024-4-9

[3]
The Rapid Development of Artificial Intelligence: GPT-4's Performance on Orthopedic Surgery Board Questions.

Orthopedics. 2024

[4]
Evidence-based potential of generative artificial intelligence large language models in orthodontics: a comparative study of ChatGPT, Google Bard, and Microsoft Bing.

Eur J Orthod. 2024-4-13

[5]
Application of artificial intelligence chatbots, including ChatGPT, in education, scholarly work, programming, and content generation and its prospects: a narrative review.

J Educ Eval Health Prof. 2023

[6]
[A Guide to Network Meta-Analysis Using Generative AI and No-Code Tools].

Hu Li Za Zhi. 2024-10

[7]
Large Language Models for Therapy Recommendations Across 3 Clinical Specialties: Comparative Study.

J Med Internet Res. 2023-10-30

[8]
Evaluation of the Performance of Generative AI Large Language Models ChatGPT, Google Bard, and Microsoft Bing Chat in Supporting Evidence-Based Dentistry: Comparative Mixed Methods Study.

J Med Internet Res. 2023-12-28

[9]
ChatGPT versus NASS clinical guidelines for degenerative spondylolisthesis: a comparative analysis.

Eur Spine J. 2024-11

[10]
Leveraging Generative AI Tools to Support the Development of Digital Solutions in Health Care Research: Case Study.

JMIR Hum Factors. 2024-3-6

引用本文的文献

[1]
Accuracy of artificial intelligence in meta-analysis: A comparative study of ChatGPT 4.0 and traditional methods in data synthesis.

World J Methodol. 2025-12-20

[2]
Codeless Development of a Customized SMILE Nomogram Using a Large Language Model: A Practical Framework for Clinicians.

J Ophthalmol. 2025-7-15

[3]
Large Language Models in Medicine: Applications, Challenges, and Future Directions.

Int J Med Sci. 2025-5-31

[4]
Confirming SPSS Results With ChatGPT-4 and o3-mini Models.

Cureus. 2025-4-10

[5]
DeepSeek's impact on thoracic surgeons' work patterns-past, present and future.

J Thorac Dis. 2025-2-28

[6]
ChatGPT for Univariate Statistics: Validation of AI-Assisted Data Analysis in Healthcare Research.

J Med Internet Res. 2025-2-7

[7]
Assessing the Current Limitations of Large Language Models in Advancing Health Care Education.

JMIR Form Res. 2025-1-16

[8]
Application of ChatGPT-4 to oculomics: a cost-effective osteoporosis risk assessment to enhance management as a proof-of-principles model in 3PM.

EPMA J. 2024-8-28

[9]
Engine of Innovation in Hospital Pharmacy: Applications and Reflections of ChatGPT.

J Med Internet Res. 2024-10-4

[10]
Development of a novel scoring system for glaucoma risk based on demographic and laboratory factors using ChatGPT-4.

Med Biol Eng Comput. 2025-1

本文引用的文献

[1]
A pilot study of measuring emotional response and perception of LLM-generated questionnaire and human-generated questionnaires.

Sci Rep. 2024-2-2

[2]
Examination of the reliability and readability of Chatbot Generative Pretrained Transformer's (ChatGPT) responses to questions about orthodontics and the evolution of these responses in an updated version.

Am J Orthod Dentofacial Orthop. 2024-5

[3]
Publishers' and journals' instructions to authors on use of generative artificial intelligence in academic and scientific publishing: bibliometric analysis.

BMJ. 2024-1-31

[4]
Scbean: a python library for single-cell multi-omics data analysis.

Bioinformatics. 2024-2-1

[5]
Beyond rating scales: With targeted evaluation, large language models are poised for psychological assessment.

Psychiatry Res. 2024-3

[6]
The positive association between the atherogenic index of plasma and the risk of new-onset hypertension: a nationwide cohort study in China.

Clin Exp Hypertens. 2024-12-31

[7]
The scholarly footprint of ChatGPT: a bibliometric analysis of the early outbreak phase.

Front Artif Intell. 2024-1-5

[8]
Comprehensive evaluation of molecule property prediction with ChatGPT.

Methods. 2024-2

[9]
ChatGPT does not neglect a neglected disease, if appropriately prompted.

Lancet Infect Dis. 2024-3

[10]
Artificial intelligence, ChatGPT, and other large language models for social determinants of health: Current state and future directions.

Cell Rep Med. 2024-1-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索