School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China.
Key Laboratory for Molecular Genetic Mechanisms and Intervention Research, On High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Xizang, China.
J Glob Health. 2024 Mar 29;14:04070. doi: 10.7189/jogh.14.04070.
BACKGROUND: OpenAI's Chat Generative Pre-trained Transformer 4.0 (ChatGPT-4), an emerging artificial intelligence (AI)-based large language model (LLM), has been receiving increasing attention from the medical research community for its innovative 'Data Analyst' feature. We aimed to compare the capabilities of ChatGPT-4 against traditional biostatistical software (i.e. SAS, SPSS, R) in statistically analysing epidemiological research data. METHODS: We used a data set from the China Health and Nutrition Survey, comprising 9317 participants and 29 variables (e.g. gender, age, educational level, marital status, income, occupation, weekly working hours, survival status). Two researchers independently evaluated the data analysis capabilities of GPT-4's 'Data Analyst' feature against SAS, SPSS, and R across three commonly used epidemiological analysis methods: Descriptive statistics, intergroup analysis, and correlation analysis. We used an internally developed evaluation scale to assess and compare the consistency of results, analytical efficiency of coding or operations, user-friendliness, and overall performance between ChatGPT-4, SAS, SPSS, and R. RESULTS: In descriptive statistics, ChatGPT-4 showed high consistency of results, greater analytical efficiency of code or operations, and more intuitive user-friendliness compared to SAS, SPSS, and R. In intergroup comparisons and correlational analyses, despite minor discrepancies in statistical outcomes for certain analysis tasks with SAS, SPSS, and R, ChatGPT-4 maintained high analytical efficiency and exceptional user-friendliness. Thus, employing ChatGPT-4 can significantly lower the operational threshold for conducting epidemiological data analysis while maintaining consistency with traditional biostatistical software's outcome, requiring only specific, clear analysis instructions without any additional operations or code writing. CONCLUSIONS: We found ChatGPT-4 to be a powerful auxiliary tool for statistical analysis in epidemiological research. However, it showed limitations in result consistency and in applying more advanced statistical methods. Therefore, we advocate for the use of ChatGPT-4 in supporting researchers with intermediate experience in data analysis. With AI technologies like LLMs advancing rapidly, their integration with data analysis platforms promises to lower operational barriers, thereby enabling researchers to dedicate greater focus to the nuanced interpretation of analysis results. This development is likely to significantly advance epidemiological and medical research.
背景:OpenAI 的 Chat Generative Pre-trained Transformer 4.0(ChatGPT-4)是一种新兴的人工智能(AI)大型语言模型(LLM),其创新的“Data Analyst”功能受到医学研究界的越来越多关注。我们旨在比较 ChatGPT-4 与传统生物统计学软件(如 SAS、SPSS、R)在分析流行病学研究数据方面的能力。
方法:我们使用来自中国健康与营养调查(China Health and Nutrition Survey)的数据,其中包括 9317 名参与者和 29 个变量(如性别、年龄、教育程度、婚姻状况、收入、职业、每周工作时间、生存状况)。两名研究人员独立评估了 GPT-4 的“Data Analyst”功能在三种常用流行病学分析方法(描述性统计、组间分析和相关性分析)方面与 SAS、SPSS 和 R 的数据分析能力。我们使用内部开发的评估量表来评估和比较 ChatGPT-4、SAS、SPSS 和 R 之间的结果一致性、编码或操作的分析效率、用户友好性和整体性能。
结果:在描述性统计方面,ChatGPT-4 与 SAS、SPSS 和 R 相比,结果一致性高,编码或操作的分析效率更高,用户友好性更强。在组间比较和相关性分析中,尽管 ChatGPT-4 在某些分析任务的统计结果与 SAS、SPSS 和 R 存在细微差异,但它保持了高的分析效率和出色的用户友好性。因此,使用 ChatGPT-4 可以显著降低进行流行病学数据分析的操作门槛,同时保持与传统生物统计学软件结果的一致性,只需要特定、明确的分析指令,而无需任何额外的操作或代码编写。
结论:我们发现 ChatGPT-4 是一种强大的统计分析辅助工具,适用于流行病学研究。然而,它在结果一致性和应用更高级的统计方法方面存在局限性。因此,我们提倡在支持数据分析经验中等的研究人员方面使用 ChatGPT-4。随着 AI 技术,如大型语言模型的快速发展,它们与数据分析平台的整合有望降低操作障碍,从而使研究人员能够更加专注于分析结果的细微解释。这一发展可能会极大地推动流行病学和医学研究的发展。
JMIR Med Inform. 2024-4-9
Hu Li Za Zhi. 2024-10
J Med Internet Res. 2023-10-30
Int J Med Sci. 2025-5-31
Cureus. 2025-4-10
J Thorac Dis. 2025-2-28
J Med Internet Res. 2025-2-7
JMIR Form Res. 2025-1-16
J Med Internet Res. 2024-10-4
Bioinformatics. 2024-2-1
Front Artif Intell. 2024-1-5
Lancet Infect Dis. 2024-3