Suppr超能文献

机器学习在预测抑郁症中的公平性和偏差校正——跨越四个研究人群。

Fairness and bias correction in machine learning for depression prediction across four study populations.

机构信息

Departament de Matemàtiques i Informàtica, Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain.

Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.

出版信息

Sci Rep. 2024 Apr 3;14(1):7848. doi: 10.1038/s41598-024-58427-7.

Abstract

A significant level of stigma and inequality exists in mental healthcare, especially in under-served populations. Inequalities are reflected in the data collected for scientific purposes. When not properly accounted for, machine learning (ML) models learned from data can reinforce these structural inequalities or biases. Here, we present a systematic study of bias in ML models designed to predict depression in four different case studies covering different countries and populations. We find that standard ML approaches regularly present biased behaviors. We also show that mitigation techniques, both standard and our own post-hoc method, can be effective in reducing the level of unfair bias. There is no one best ML model for depression prediction that provides equality of outcomes. This emphasizes the importance of analyzing fairness during model selection and transparent reporting about the impact of debiasing interventions. Finally, we also identify positive habits and open challenges that practitioners could follow to enhance fairness in their models.

摘要

在精神卫生保健中存在着严重的污名化和不平等现象,尤其是在服务不足的人群中。不平等现象反映在为科学目的而收集的数据中。如果没有得到妥善处理,机器学习 (ML) 模型从数据中学习可能会加剧这些结构性不平等或偏见。在这里,我们对旨在预测四个不同国家和人群的抑郁症的 ML 模型中的偏差进行了系统研究。我们发现,标准的 ML 方法经常表现出有偏差的行为。我们还表明,缓解技术,无论是标准的还是我们自己的事后方法,都可以有效地降低不公平偏差的程度。没有一种最好的 ML 模型可以对抑郁症的预测提供公平的结果。这强调了在模型选择过程中分析公平性以及透明报告去偏干预措施的影响的重要性。最后,我们还确定了从业者可以遵循的积极习惯和开放挑战,以提高模型的公平性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ba/10991528/908e407501b1/41598_2024_58427_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验