Suppr超能文献

基于迁移学习的糖尿病性黄斑水肿和干性年龄相关性黄斑变性光学相干断层扫描图像分类

Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration.

作者信息

Karri S P K, Chakraborty Debjani, Chatterjee Jyotirmoy

机构信息

School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India.

Department of Mathematics, IIT Kharagpur, Kharagpur, India.

出版信息

Biomed Opt Express. 2017 Jan 4;8(2):579-592. doi: 10.1364/BOE.8.000579. eCollection 2017 Feb 1.

Abstract

We present an algorithm for identifying retinal pathologies given retinal optical coherence tomography (OCT) images. Our approach fine-tunes a pre-trained convolutional neural network (CNN), GoogLeNet, to improve its prediction capability (compared to random initialization training) and identifies salient responses during prediction to understand learned filter characteristics. We considered a data set containing subjects with diabetic macular edema, or dry age-related macular degeneration, or no pathology. The fine-tuned CNN could effectively identify pathologies in comparison to classical learning. Our algorithm aims to demonstrate that models trained on non-medical images can be fine-tuned for classifying OCT images with limited training data.

摘要

我们提出了一种用于在给定视网膜光学相干断层扫描(OCT)图像的情况下识别视网膜病变的算法。我们的方法对预训练的卷积神经网络(CNN)GoogLeNet进行微调,以提高其预测能力(与随机初始化训练相比),并在预测过程中识别显著响应,以了解学习到的滤波器特征。我们考虑了一个包含患有糖尿病性黄斑水肿、干性年龄相关性黄斑变性或无病变的受试者的数据集。与传统学习相比,微调后的CNN能够有效地识别病变。我们的算法旨在证明,在非医学图像上训练的模型可以通过有限的训练数据进行微调,以对OCT图像进行分类。

相似文献

2
Classification of age-related macular degeneration using convolutional-neural-network-based transfer learning.
BMC Bioinformatics. 2021 Nov 8;22(Suppl 5):99. doi: 10.1186/s12859-021-04001-1.
3
Fully automated detection of retinal disorders by image-based deep learning.
Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):495-505. doi: 10.1007/s00417-018-04224-8. Epub 2019 Jan 4.
4
OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
Graefes Arch Clin Exp Ophthalmol. 2018 Jan;256(1):91-98. doi: 10.1007/s00417-017-3839-y. Epub 2017 Nov 10.
7
OctNET: A Lightweight CNN for Retinal Disease Classification from Optical Coherence Tomography Images.
Comput Methods Programs Biomed. 2021 Mar;200:105877. doi: 10.1016/j.cmpb.2020.105877. Epub 2020 Nov 28.
8
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.
Comput Methods Programs Biomed. 2019 Sep;178:181-189. doi: 10.1016/j.cmpb.2019.06.016. Epub 2019 Jun 14.
10
Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images.
Biomed Opt Express. 2014 Sep 12;5(10):3568-77. doi: 10.1364/BOE.5.003568. eCollection 2014 Oct 1.

引用本文的文献

1
From Image to Sequence: Exploring Vision Transformers for Optical Coherence Tomography Classification.
J Med Signals Sens. 2025 Jun 9;15:18. doi: 10.4103/jmss.jmss_58_24. eCollection 2025.
3
Retinal OCT image classification based on MGR-GAN.
Med Biol Eng Comput. 2025 Jan 25. doi: 10.1007/s11517-025-03286-1.
4
Bibliometric analysis of research on the application of deep learning to ophthalmology.
Quant Imaging Med Surg. 2025 Jan 2;15(1):852-866. doi: 10.21037/qims-24-1340. Epub 2024 Dec 30.
5
Inter-rater reliability in labeling quality and pathological features of retinal OCT scans: A customized annotation software approach.
PLoS One. 2024 Dec 18;19(12):e0314707. doi: 10.1371/journal.pone.0314707. eCollection 2024.
6
SCINet: A Segmentation and Classification Interaction CNN Method for Arteriosclerotic Retinopathy Grading.
Interdiscip Sci. 2024 Dec;16(4):926-935. doi: 10.1007/s12539-024-00650-x. Epub 2024 Sep 2.
8
A Comprehensive Review of AI Diagnosis Strategies for Age-Related Macular Degeneration (AMD).
Bioengineering (Basel). 2024 Jul 13;11(7):711. doi: 10.3390/bioengineering11070711.
9
A new intelligent system based deep learning to detect DME and AMD in OCT images.
Int Ophthalmol. 2024 Apr 23;44(1):191. doi: 10.1007/s10792-024-03115-8.
10
Explainable ensemble learning method for OCT detection with transfer learning.
PLoS One. 2024 Mar 22;19(3):e0296175. doi: 10.1371/journal.pone.0296175. eCollection 2024.

本文引用的文献

2
Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection.
J Ophthalmol. 2016;2016:3298606. doi: 10.1155/2016/3298606. Epub 2016 Jul 31.
3
Learning layer-specific edges for segmenting retinal layers with large deformations.
Biomed Opt Express. 2016 Jun 30;7(7):2888-901. doi: 10.1364/BOE.7.002888. eCollection 2016 Jul 1.
4
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
5
Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema.
Biomed Opt Express. 2015 Mar 9;6(4):1172-94. doi: 10.1364/BOE.6.001172. eCollection 2015 Apr 1.
6
Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images.
Biomed Opt Express. 2014 Sep 12;5(10):3568-77. doi: 10.1364/BOE.5.003568. eCollection 2014 Oct 1.
7
Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization.
Med Image Anal. 2014 Jul;18(5):781-94. doi: 10.1016/j.media.2014.03.004. Epub 2014 Apr 13.
8
Multiple-object geometric deformable model for segmentation of macular OCT.
Biomed Opt Express. 2014 Mar 4;5(4):1062-74. doi: 10.1364/BOE.5.001062. eCollection 2014 Apr 1.
9
Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990-2010.
Br J Ophthalmol. 2014 May;98(5):629-38. doi: 10.1136/bjophthalmol-2013-304033. Epub 2014 Mar 24.
10
Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology.
Biomed Opt Express. 2014 Jan 7;5(2):348-65. doi: 10.1364/BOE.5.000348. eCollection 2014 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验