Suppr超能文献

用于数据驱动多分辨率功能磁共振成像分析的分层主成分分析

Hierarchical Principal Components for Data-Driven Multiresolution fMRI Analyses.

作者信息

Wylie Korey P, Vu Thao, Legget Kristina T, Tregellas Jason R

机构信息

Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

出版信息

Brain Sci. 2024 Mar 28;14(4):325. doi: 10.3390/brainsci14040325.

Abstract

Understanding the organization of neural processing is a fundamental goal of neuroscience. Recent work suggests that these systems are organized as a multiscale hierarchy, with increasingly specialized subsystems nested inside general processing systems. Current neuroimaging methods, such as independent component analysis (ICA), cannot fully capture this hierarchy since they are limited to a single spatial scale. In this manuscript, we introduce multiresolution hierarchical principal components analysis (hPCA) and compare it to ICA using simulated fMRI datasets. Furthermore, we describe a parametric statistical filtering method developed to focus analyses on biologically relevant features. Lastly, we apply hPCA to the Human Connectome Project (HCP) to demonstrate its ability to estimate a hierarchy from real fMRI data. hPCA accurately estimated spatial maps and time series from networks with diverse hierarchical structures. Simulated hierarchies varied in the degree of branching, such as two-way or three-way subdivisions, and the total number of levels, with varying equal or unequal subdivision sizes at each branch. In each case, as well as in the HCP, hPCA was able to reconstruct a known hierarchy of networks. Our results suggest that hPCA can facilitate more detailed and comprehensive analyses of the brain's network of networks and the multiscale regional specializations underlying neural processing and cognition.

摘要

理解神经处理的组织方式是神经科学的一个基本目标。最近的研究表明,这些系统被组织成一个多尺度层次结构,越来越专门化的子系统嵌套在一般处理系统内部。当前的神经成像方法,如独立成分分析(ICA),无法完全捕捉到这种层次结构,因为它们仅限于单一的空间尺度。在本论文中,我们介绍了多分辨率层次主成分分析(hPCA),并使用模拟的功能磁共振成像(fMRI)数据集将其与ICA进行比较。此外,我们描述了一种参数统计滤波方法,该方法旨在将分析重点放在生物学相关特征上。最后,我们将hPCA应用于人类连接组计划(HCP),以展示其从真实fMRI数据中估计层次结构的能力。hPCA能够准确地从具有不同层次结构的网络中估计空间图谱和时间序列。模拟的层次结构在分支程度上有所不同,例如双向或三向细分,以及层次总数,每个分支处的细分大小相等或不相等。在每种情况下,以及在HCP中,hPCA都能够重建已知的网络层次结构。我们的结果表明,hPCA可以促进对大脑网络的网络以及神经处理和认知背后的多尺度区域特化进行更详细和全面的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12f0/11048444/2ab151e13647/brainsci-14-00325-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验