Petrova Maria, Miladinova-Georgieva Kamelia, Geneva Maria
Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria.
Int J Mol Sci. 2024 Apr 10;25(8):4197. doi: 10.3390/ijms25084197.
The medicinal plants of the Asteraceae family are a valuable source of bioactive secondary metabolites, including polyphenols, phenolic acids, flavonoids, acetylenes, sesquiterpene lactones, triterpenes, etc. Under stressful conditions, the plants develop these secondary substances to carry out physiological tasks in plant cells. Secondary Asteraceae metabolites that are of the greatest interest to consumers are artemisinin (an anti-malarial drug from L.-sweet wormwood), steviol glycosides (an intense sweetener from Bert.-stevia), caffeic acid derivatives (with a broad spectrum of biological activities synthesized from (L.) Moench-echinacea and L.-chicory), helenalin and dihydrohelenalin (anti-inflammatory drug from L.-mountain arnica), parthenolide ("medieval aspirin" from (L.) Sch.Bip.-feverfew), and silymarin (liver-protective medicine from (L.) Gaertn.-milk thistle). The necessity to enhance secondary metabolite synthesis has arisen due to the widespread use of these metabolites in numerous industrial sectors. Elicitation is an effective strategy to enhance the production of secondary metabolites in in vitro cultures. Suitable technological platforms for the production of phytochemicals are cell suspension, shoots, and hairy root cultures. Numerous reports describe an enhanced accumulation of desired metabolites after the application of various abiotic and biotic elicitors. Elicitors induce transcriptional changes in biosynthetic genes, leading to the metabolic reprogramming of secondary metabolism and clarifying the mechanism of the synthesis of bioactive compounds. This review summarizes biotechnological investigations concerning the biosynthesis of medicinally essential metabolites in plants of the Asteraceae family after various elicitor treatments.
菊科药用植物是生物活性次生代谢产物的宝贵来源,包括多酚、酚酸、黄酮类化合物、乙炔、倍半萜内酯、三萜等。在胁迫条件下,植物会合成这些次生物质以在植物细胞中执行生理任务。消费者最感兴趣的菊科次生代谢产物有青蒿素(来自黄花蒿的抗疟药物)、甜菊糖苷(来自甜叶菊的高强度甜味剂)、咖啡酸衍生物(由紫锥菊和菊苣合成,具有广泛的生物活性)、堆心菊灵和二氢堆心菊灵(来自山金车的抗炎药物)、小白菊内酯(来自小白菊的“中世纪阿司匹林”)以及水飞蓟素(来自水飞蓟的肝脏保护药物)。由于这些代谢产物在众多工业领域的广泛应用,提高次生代谢产物合成的需求应运而生。诱导是提高体外培养物中次生代谢产物产量的有效策略。用于生产植物化学物质的合适技术平台是细胞悬浮培养、芽培养和毛状根培养。许多报告描述了在应用各种非生物和生物诱导剂后,所需代谢产物的积累增加。诱导剂会引起生物合成基因的转录变化,导致次生代谢的代谢重编程,并阐明生物活性化合物的合成机制。本综述总结了关于菊科植物在各种诱导剂处理后药用必需代谢产物生物合成的生物技术研究。