Suppr超能文献

方案:减少社区暴力:对有效措施的系统元综述。

Protocol: Reducing community violence: A systematic meta-review of what works.

作者信息

Wilson David B, Abt Thomas, Kimbrell Catherine, Johnson William

机构信息

Department of Criminology, Law and Society, Center for Evidence-Based Crime Policy (CEBCP) George Mason University Fairfax Virginia USA.

Department of Criminology and Criminal Justice, The Center for the Study and Practice of Violence Reduction (VRC) University of Maryland College Park Maryland USA.

出版信息

Campbell Syst Rev. 2024 May 19;20(2):e1409. doi: 10.1002/cl2.1409. eCollection 2024 Jun.

Abstract

This is the protocol for a Campbell Collaboration systematic review. Our objective is to synthesize what is known about the effectiveness of strategies for reducing community violence, focusing on those strategies that have been subjected to a systematic review. We aim to answer the following questions in this review: what strategies to reduce community violence have been rigorously evaluated through systematic reviews; which have sufficient evidence of effectiveness, which seem promising, and which appear ineffective; and what implications for practice and policy can be drawn from this large body of research? We anticipate categorizing the results of our review similarly to the original review by Abt and Winship (2016). That is, categorizing reviews by people-based approaches, place-based approaches, and behavior-based approaches. However, given that this is an updated review and we will be incorporating additional studies, we may find that an alternative or additional categorization is warranted and update our categorization accordingly. Implications for policy and practice as they relate to these categories will be discussed.

摘要

这是坎贝尔合作组织系统评价的方案。我们的目标是综合关于减少社区暴力策略有效性的已知信息,重点关注那些已经接受系统评价的策略。我们旨在通过本次评价回答以下问题:哪些减少社区暴力的策略已通过系统评价得到严格评估;哪些有充分的有效性证据,哪些看起来有前景,哪些似乎无效;以及从这大量研究中可以得出哪些对实践和政策的启示?我们预计将本次评价的结果与Abt和Winship(2016年)的原始评价类似地进行分类。也就是说,按基于人的方法、基于地点的方法和基于行为的方法对评价进行分类。然而,鉴于这是一次更新的评价,并且我们将纳入更多研究,我们可能会发现有必要采用替代或额外的分类方法,并相应地更新我们的分类。将讨论与这些类别相关的政策和实践启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdb/11103278/7cb3585823bf/CL2-20-e1409-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验