Khakurel Krishna Prasad, Nemergut Michal, Džupponová Veronika, Kropielnicki Kamil, Savko Martin, Žoldák Gabriel, Andreasson Jakob
ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnicí 835, 25241 Dolní Břežany, Czech Republic.
Center for Interdisciplinary Bio-sciences, Technology and Innovation Park, P. J. Šafárik University, Košice, Slovakia.
J Appl Crystallogr. 2024 Apr 15;57(Pt 3):842-847. doi: 10.1107/S1600576724002140. eCollection 2024 Jun 1.
X-ray crystallography is an established tool to probe the structure of macromolecules with atomic resolution. Compared with alternative techniques such as single-particle cryo-electron microscopy and micro-electron diffraction, X-ray crystallography is uniquely suited to room-temperature studies and for obtaining a detailed picture of macromolecules subjected to an external electric field (EEF). The impact of an EEF on proteins has been extensively explored through single-crystal X-ray crystallography, which works well with larger high-quality protein crystals. This article introduces a novel design for a 3D-printed crystallization plate that serves a dual purpose: fostering crystal growth and allowing the concurrent examination of the effects of an EEF on crystals of varying sizes. The plate's compatibility with established X-ray crystallography techniques is evaluated.
X射线晶体学是一种用于以原子分辨率探测大分子结构的成熟工具。与单颗粒冷冻电子显微镜和微电子衍射等其他技术相比,X射线晶体学特别适合进行室温研究,并且能够获得处于外部电场(EEF)中的大分子的详细图像。通过单晶X射线晶体学,已经广泛探索了EEF对蛋白质的影响,这种方法在处理较大的高质量蛋白质晶体时效果良好。本文介绍了一种3D打印结晶板的新颖设计,该结晶板具有双重功能:促进晶体生长,并允许同时研究EEF对不同大小晶体的影响。评估了该板与现有X射线晶体学技术的兼容性。