Suppr超能文献

使用深度学习对乳腺癌分期分类进行后处理公平性以减少偏差时面临的挑战。

Challenges in Reducing Bias Using Post-Processing Fairness for Breast Cancer Stage Classification with Deep Learning.

作者信息

Soltan Armin, Washington Peter

机构信息

Hawaii Health Digital Lab, Information and Computer Science, University of Hawaii at Manoa, Honolulu, HI 96822, USA.

出版信息

Algorithms. 2024 Apr;17(4). doi: 10.3390/a17040141. Epub 2024 Mar 28.

Abstract

Breast cancer is the most common cancer affecting women globally. Despite the significant impact of deep learning models on breast cancer diagnosis and treatment, achieving fairness or equitable outcomes across diverse populations remains a challenge when some demographic groups are underrepresented in the training data. We quantified the bias of models trained to predict breast cancer stage from a dataset consisting of 1000 biopsies from 842 patients provided by AIM-Ahead (Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity). Notably, the majority of data (over 70%) were from White patients. We found that prior to post-processing adjustments, all deep learning models we trained consistently performed better for White patients than for non-White patients. After model calibration, we observed mixed results, with only some models demonstrating improved performance. This work provides a case study of bias in breast cancer medical imaging models and highlights the challenges in using post-processing to attempt to achieve fairness.

摘要

乳腺癌是全球影响女性的最常见癌症。尽管深度学习模型对乳腺癌的诊断和治疗有重大影响,但当某些人口群体在训练数据中代表性不足时,在不同人群中实现公平或平等的结果仍然是一项挑战。我们对从AIM-Ahead(推进健康公平和研究人员多样性的人工智能/机器学习联盟)提供的由842名患者的1000份活检样本组成的数据集中训练的预测乳腺癌分期的模型偏差进行了量化。值得注意的是,大多数数据(超过70%)来自白人患者。我们发现,在进行后处理调整之前,我们训练的所有深度学习模型对白人患者的表现始终优于非白人患者。在模型校准后,我们观察到了不同的结果,只有一些模型表现出性能提升。这项工作提供了一个乳腺癌医学成像模型偏差的案例研究,并突出了使用后处理试图实现公平所面临的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f41/11221567/eede7789d761/nihms-1989635-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验