Suppr超能文献

基于深度学习的维度情感识别在基于对话代理的认知行为疗法中的应用

Deep learning-based dimensional emotion recognition for conversational agent-based cognitive behavioral therapy.

作者信息

Striegl Julian, Richter Jordan Wenzel, Grossmann Leoni, Bråstad Björn, Gotthardt Marie, Rück Christian, Wallert John, Loitsch Claudia

机构信息

Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI Dresden/Leipzig), Technische Universität Dresden, Dresden, Saxony, Germany.

Chair of Human-Computer Interaction, Technische Universität Dresden, Dresden, Saxony, Germany.

出版信息

PeerJ Comput Sci. 2024 Jun 24;10:e2104. doi: 10.7717/peerj-cs.2104. eCollection 2024.

Abstract

Internet-based cognitive behavioral therapy (iCBT) offers a scalable, cost-effective, accessible, and low-threshold form of psychotherapy. Recent advancements explored the use of conversational agents such as chatbots and voice assistants to enhance the delivery of iCBT. These agents can deliver iCBT-based exercises, recognize and track emotional states, assess therapy progress, convey empathy, and potentially predict long-term therapy outcome. However, existing systems predominantly utilize categorical approaches for emotional modeling, which can oversimplify the complexity of human emotional states. To address this, we developed a transformer-based model for dimensional text-based emotion recognition, fine-tuned with a novel, comprehensive dimensional emotion dataset comprising 75,503 samples. This model significantly outperforms existing state-of-the-art models in detecting the dimensions of valence, arousal, and dominance, achieving a Pearson correlation coefficient of  = 0.90,  = 0.77, and  = 0.64, respectively. Furthermore, a feasibility study involving 20 participants confirmed the model's technical effectiveness and its usability, acceptance, and empathic understanding in a conversational agent-based iCBT setting, marking a substantial improvement in personalized and effective therapy experiences.

摘要

基于互联网的认知行为疗法(iCBT)提供了一种可扩展、经济高效、易于获取且门槛较低的心理治疗形式。最近的进展探索了使用聊天机器人和语音助手等对话代理来加强iCBT的实施。这些代理可以提供基于iCBT的练习、识别和跟踪情绪状态、评估治疗进展、表达同理心,并有可能预测长期治疗结果。然而,现有系统主要采用分类方法进行情绪建模,这可能会过度简化人类情绪状态的复杂性。为了解决这个问题,我们开发了一种基于Transformer的模型,用于基于文本的维度情绪识别,并使用一个包含75503个样本的新颖、全面的维度情绪数据集进行微调。该模型在检测效价、唤醒和优势维度方面显著优于现有的最先进模型,皮尔逊相关系数分别达到r = 0.90、r = 0.77和r = 0.64。此外,一项涉及20名参与者的可行性研究证实了该模型在基于对话代理的iCBT环境中的技术有效性及其可用性、可接受性和同理心理解,标志着个性化和有效治疗体验有了实质性改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cca9/11232613/259dde6c1739/peerj-cs-10-2104-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验