Suppr超能文献

多组学技术在雄激素性脱发中的应用:现状与展望。

Application of multi-omics techniques to androgenetic alopecia: Current status and perspectives.

作者信息

Li Yujie, Dong Tingru, Wan Sheng, Xiong Renxue, Jin Shiyu, Dai Yeqin, Guan Cuiping

机构信息

Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310009, China.

Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou 310009, China.

出版信息

Comput Struct Biotechnol J. 2024 Jun 20;23:2623-2636. doi: 10.1016/j.csbj.2024.06.026. eCollection 2024 Dec.

Abstract

The rapid advancement of sequencing technologies has enabled the generation of vast datasets, allowing for the in-depth analysis of sequencing data. This analysis has facilitated the validation of novel pathogenesis hypotheses for understanding and treating diseases through and in vivo experiments. Androgenetic alopecia (AGA), a common hair loss disorder, has been a key focus of investigators attempting to uncover its underlying mechanisms. Abnormal changes in mRNA, proteins, and metabolites have been identified in individuals with AGA, and future developments in sequencing technologies may reveal new biomarkers for AGA. By integrating multiple omics analysis datasets such as genomics, transcriptomics, proteomics, and metabolomics-along with clinical phenotype data-we can achieve a comprehensive understanding of the molecular underpinnings of AGA. This review summarizes the data-mining studies conducted on various omics analysis datasets as related to AGA that have been adopted to interpret the biological data obtained from different omics layers. We herein discuss the challenges of integrative omics analyses, and suggest that collaborative multi-omics studies can enhance the understanding of the complete pathomechanism(s) of AGA by focusing on the interaction networks comprising DNA, RNA, proteins, and metabolites.

摘要

测序技术的快速发展使得大量数据集得以生成,从而能够对测序数据进行深入分析。这种分析通过体外和体内实验促进了对疾病理解和治疗的新发病机制假说的验证。雄激素性脱发(AGA)是一种常见的脱发疾病,一直是试图揭示其潜在机制的研究人员的重点关注对象。在AGA患者中已发现mRNA、蛋白质和代谢物的异常变化,测序技术的未来发展可能会揭示AGA的新生物标志物。通过整合基因组学、转录组学、蛋白质组学和代谢组学等多个组学分析数据集以及临床表型数据,我们可以全面了解AGA的分子基础。本综述总结了对与AGA相关的各种组学分析数据集进行的数据挖掘研究,这些研究已被用于解释从不同组学层面获得的生物学数据。我们在此讨论整合组学分析的挑战,并建议合作的多组学研究可以通过关注包含DNA、RNA、蛋白质和代谢物的相互作用网络来增强对AGA完整发病机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e68/11253216/67b9b1bc06ca/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验