Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA, 16802, USA.
Department of Geosciences, The Pennsylvania State University, 211 Deike Building University Park, University Park, PA, 16802, USA.
ISME J. 2022 Dec;16(12):2666-2679. doi: 10.1038/s41396-022-01320-w. Epub 2022 Sep 19.
Cueva de la Mora is a permanently stratified acidic pit lake and a model system for extreme acid mine drainage (AMD) studies. Using a combination of amplicon sequencing, metagenomics and metatranscriptomics we performed a taxonomically resolved analysis of microbial contributions to carbon, sulfur, iron, and nitrogen cycling. We found that active green alga Coccomyxa onubensis dominated the upper layer and chemocline. The chemocline had activity for iron(II) oxidation carried out by populations of Ca. Acidulodesulfobacterium, Ferrovum, Leptospirillium, and Armatimonadetes. Predicted activity for iron(III) reduction was only detected in the deep layer affiliated with Proteobacteria. Activity for dissimilatory nitrogen cycling including nitrogen fixation and nitrate reduction was primarily predicted in the chemocline. Heterotrophic archaeal populations with predicted activity for sulfide oxidation related to uncultured Thermoplasmatales dominated in the deep layer. Abundant sulfate-reducing Desulfomonile and Ca. Acidulodesulfobacterium populations were active in the chemocline. In the deep layer, uncultured populations from the bacterial phyla Actinobacteria, Chloroflexi, and Nitrospirae contributed to both sulfate reduction and sulfide oxidation. Based on this information we evaluated the potential for sulfide mineral precipitation in the deep layer as a tool for remediation. We argue that sulfide precipitation is not limited by microbial genetic potential but rather by the quantity and quality of organic carbon reaching the deep layer as well as by oxygen additions to the groundwater enabling sulfur oxidation. Addition of organic carbon and elemental sulfur should stimulate sulfate reduction and limit reoxidation of sulfide minerals.
Cueva de la Mora 是一个永久性分层的酸性坑湖,是极端酸性矿山排水(AMD)研究的模型系统。我们使用扩增子测序、宏基因组学和宏转录组学相结合的方法,对微生物在碳、硫、铁和氮循环中的作用进行了分类解析分析。我们发现,活跃的绿藻 Coccomyxa onubensis 在上层和化变层占主导地位。化变层具有由 Ca. Acidulodesulfobacterium、Ferrovum、Leptospirillium 和 Armatimonadetes 种群进行的铁(II)氧化活性。仅在与变形菌门相关的深层检测到预测的铁(III)还原活性。与氮固定和硝酸盐还原有关的异化氮循环活性主要预测存在于化变层中。在深层,具有预测的硫化物氧化活性的异养古菌种群与未培养的 Thermoplasmatales 有关,占主导地位。丰富的硫酸盐还原菌 Desulfomonile 和 Ca. Acidulodesulfobacterium 种群在化变层中活跃。在深层,来自放线菌门、绿弯菌门和硝化螺旋菌门的未培养细菌门的种群既参与硫酸盐还原,也参与硫化物氧化。根据这些信息,我们评估了深层中硫化物矿物沉淀作为修复工具的潜力。我们认为,硫化物沉淀不是受微生物遗传潜力限制,而是受到达深层的有机碳的数量和质量以及向地下水添加氧气以实现硫氧化的限制。添加有机碳和元素硫应刺激硫酸盐还原并限制硫化物矿物的再氧化。