UVA School of Medicine, Charlottesville, Virginia, USA.
Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of British Columbia, Vancouver, Canada.
Otolaryngol Head Neck Surg. 2024 Dec;171(6):1736-1750. doi: 10.1002/ohn.919. Epub 2024 Jul 30.
It is difficult to predict which mechanically ventilated patients will ultimately require a tracheostomy which further predisposes them to unnecessary spontaneous breathing trials, additional time on the ventilator, increased costs, and further ventilation-related complications such as subglottic stenosis. In this study, we aimed to develop a machine learning tool to predict which patients need a tracheostomy at the onset of admission to the intensive care unit (ICU).
Retrospective Cohort Study.
Multicenter Study of 335 Intensive Care Units between 2014 and 2015.
The eICU Collaborative Research Database (eICU-CRD) was utilized to obtain the patient cohort. Inclusion criteria included: (1) Age >18 years and (2) ICU admission requiring mechanical ventilation. The primary outcome of interest included tracheostomy assessed via a binary classification model. Models included logistic regression (LR), random forest (RF), and Extreme Gradient Boosting (XGBoost).
Of 38,508 invasively mechanically ventilated patients, 1605 patients underwent a tracheostomy. The XGBoost, RF, and LR models had fair performances at an AUROC 0.794, 0.780, and 0.775 respectively. Limiting the XGBoost model to 20 features out of 331, a minimal reduction in performance was observed with an AUROC of 0.778. Using Shapley Additive Explanations, the top features were an admission diagnosis of pneumonia or sepsis and comorbidity of chronic respiratory failure.
Our machine learning model accurately predicts the probability that a patient will eventually require a tracheostomy upon ICU admission, and upon prospective validation, we have the potential to institute earlier interventions and reduce the complications of prolonged ventilation.
很难预测哪些需要机械通气的患者最终需要进行气管切开术,这进一步使他们面临不必要的自主呼吸试验、在呼吸机上的时间延长、成本增加以及进一步与通气相关的并发症,如声门下狭窄。在这项研究中,我们旨在开发一种机器学习工具,以预测患者在入住重症监护病房(ICU)时需要进行气管切开术。
回顾性队列研究。
2014 年至 2015 年间的 335 个重症监护病房的多中心研究。
利用 eICU 协作研究数据库(eICU-CRD)获得患者队列。纳入标准包括:(1)年龄>18 岁和(2)需要机械通气的 ICU 入院。主要观察结果包括通过二分类模型评估的气管切开术。模型包括逻辑回归(LR)、随机森林(RF)和极端梯度提升(XGBoost)。
在 38508 例接受有创机械通气的患者中,有 1605 例患者进行了气管切开术。XGBoost、RF 和 LR 模型的 AUROC 分别为 0.794、0.780 和 0.775,表现良好。将 XGBoost 模型限制在 331 个特征中的 20 个,性能略有下降,AUROC 为 0.778。使用 Shapley 加法解释,最重要的特征是入院诊断为肺炎或败血症和慢性呼吸衰竭合并症。
我们的机器学习模型准确预测了患者在入住 ICU 时最终需要进行气管切开术的概率,并且在前瞻性验证后,我们有可能进行更早的干预并减少长时间通气的并发症。