Ding Ning, Nath Tanmay, Damarla Mahendra, Gao Li, Hassoun Paul M
Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224-6821, USA.
Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Sci Rep. 2024 Aug 1;14(1):17853. doi: 10.1038/s41598-024-68653-8.
Acute respiratory distress syndrome (ARDS) is a devastating critical care syndrome with significant morbidity and mortality. The objective of this study was to evaluate the predictive values of dynamic clinical indices by developing machine-learning (ML) models for early and accurate clinical assessment of the disease prognosis of ARDS. We conducted a retrospective observational study by applying dynamic clinical data collected in the ARDSNet FACTT Trial (n = 1000) to ML-based algorithms for predicting mortality. In order to compare the significance of clinical features dynamically, we further applied the random forest (RF) model to nine selected clinical parameters acquired at baseline and day 3 independently. An RF model trained using clinical data collected at day 3 showed improved performance and prognostication efficacy (area under the curve [AUC]: 0.84, 95% CI: 0.78-0.89) compared to baseline with an AUC value of 0.72 (95% CI: 0.65-0.78). Mean airway pressure (MAP), bicarbonate, age, platelet count, albumin, heart rate, and glucose were the most significant clinical indicators associated with mortality at day 3. Thus, clinical features collected early (day 3) improved performance of integrative ML models with better prognostication for mortality. Among these, MAP represented the most important feature for ARDS patients' early risk stratification.
急性呼吸窘迫综合征(ARDS)是一种具有高发病率和死亡率的严重危重症综合征。本研究的目的是通过开发机器学习(ML)模型来评估动态临床指标对ARDS疾病预后进行早期准确临床评估的预测价值。我们进行了一项回顾性观察研究,将ARDSNet FACTT试验中收集的动态临床数据(n = 1000)应用于基于ML的死亡率预测算法。为了动态比较临床特征的重要性,我们进一步将随机森林(RF)模型独立应用于在基线和第3天获取的九个选定临床参数。与基线时AUC值为0.72(95%CI:0.65 - 0.78)相比,使用第3天收集的临床数据训练的RF模型表现出更好的性能和预后预测效能(曲线下面积[AUC]:0.84,95%CI:0.78 - 0.89)。平均气道压(MAP)、碳酸氢盐、年龄、血小板计数、白蛋白、心率和血糖是与第3天死亡率相关的最显著临床指标。因此,早期(第3天)收集的临床特征提高了综合ML模型的性能,对死亡率有更好的预后预测。其中,MAP是ARDS患者早期风险分层的最重要特征。