Suppr超能文献

吉布森共振的一种潜在机制:行为同步源于无监督储层网络中的局部稳态。

A potential mechanism for Gibsonian resonance: behavioral entrainment emerges from local homeostasis in an unsupervised reservoir network.

作者信息

Falandays J Benjamin, Yoshimi Jeffrey, Warren William H, Spivey Michael J

机构信息

School of Social and Behavioral Sciences, Arizona State University, Glendale, USA.

Department of Cognitive and Information Sciences, University of California, Merced, Merced, USA.

出版信息

Cogn Neurodyn. 2024 Aug;18(4):1811-1834. doi: 10.1007/s11571-023-09988-2. Epub 2023 Jul 24.

Abstract

While the cognitivist school of thought holds that the mind is analogous to a computer, performing logical operations over internal representations, the tradition of ecological psychology contends that organisms can directly "resonate" to information for action and perception without the need for a representational intermediary. The concept of resonance has played an important role in ecological psychology, but it remains a metaphor. Supplying a mechanistic account of resonance requires a non-representational account of central nervous system (CNS) dynamics. Towards this, we present a series of simple models in which a reservoir network with homeostatic nodes is used to control a simple agent embedded in an environment. This network spontaneously produces behaviors that are adaptive in each context, including (1) visually tracking a moving object, (2) substantially above-chance performance in the arcade game , (2) and avoiding walls while controlling a mobile agent. Upon analyzing the dynamics of the networks, we find that behavioral stability can be maintained the formation of stable or recurring patterns of network activity that could be identified as neural representations. These results may represent a useful step towards a mechanistic grounding of resonance and a view of the CNS that is compatible with ecological psychology.

摘要

认知主义思想流派认为,心智类似于计算机,对内部表征进行逻辑运算,而生态心理学传统则主张,生物体可以直接与用于行动和感知的信息“共鸣”,无需表征中介。共鸣概念在生态心理学中发挥了重要作用,但它仍然是一个隐喻。提供共鸣的机制性解释需要对中枢神经系统(CNS)动力学进行非表征性解释。为此,我们提出了一系列简单模型,其中具有稳态节点的储层网络用于控制嵌入环境中的简单智能体。该网络自发产生在每种情境中都具有适应性的行为,包括(1)视觉跟踪移动物体,(2)在街机游戏中表现远超随机水平,以及(2)在控制移动智能体时避开墙壁。在分析网络动力学时,我们发现行为稳定性可以通过形成稳定或重复的网络活动模式来维持,这些模式可以被识别为神经表征。这些结果可能代表了朝着共鸣的机制性基础以及与生态心理学兼容的中枢神经系统观点迈出的有益一步。

相似文献

引用本文的文献

本文引用的文献

2
The Entangled Brain.《纠缠的大脑》
J Cogn Neurosci. 2023 Mar 1;35(3):349-360. doi: 10.1162/jocn_a_01908.
3
Networks behind the morphology and structural design of living systems.生命系统形态和结构设计背后的网络。
Phys Life Rev. 2022 Jul;41:1-21. doi: 10.1016/j.plrev.2022.03.001. Epub 2022 Mar 10.
4
The Emperor's New Markov Blankets.皇帝的新马尔可夫毯。
Behav Brain Sci. 2021 Oct 22;45:e183. doi: 10.1017/S0140525X21002351.
7
Representational drift in the mouse visual cortex.小鼠视觉皮层的表象漂移。
Curr Biol. 2021 Oct 11;31(19):4327-4339.e6. doi: 10.1016/j.cub.2021.07.062. Epub 2021 Aug 24.
8
Multilevel rhythms in multimodal communication.多模态交流中的多层次节律。
Philos Trans R Soc Lond B Biol Sci. 2021 Oct 11;376(1835):20200334. doi: 10.1098/rstb.2020.0334. Epub 2021 Aug 23.
9
10
Representational drift in primary olfactory cortex.初级嗅觉皮层中的表征漂移。
Nature. 2021 Jun;594(7864):541-546. doi: 10.1038/s41586-021-03628-7. Epub 2021 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验