Tian Shaorui, Liu Changyun, Luo Futing, Qiao Gang, Dong Jie, Wang Qin, Wen Yuxia, Wei Xuefeng, Pan Qi, Ma Xiaozhou, Sun Xianchao
Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China.
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China.
Hortic Res. 2024 Jun 27;11(8):uhae176. doi: 10.1093/hr/uhae176. eCollection 2024 Aug.
Synaptotagmin A (SYTA), renowned for its indispensable role in mammalian vesicle trafficking, has recently captured attention in plant biology owing to its potential regulatory functions. This study meticulously delves into the involvement of SlSYTA in plant immunity, focusing on its response to an array of pathogens affecting tomatoes. Our comprehensive inquiry uncovers that SlSYTA overexpression heightens susceptibility to tobacco mosaic virus (TMV), , , and pv. DC3000, whereas RNA interference (RNAi) plants show a robust and encompassing resistance to these pathogens. Remarkably, our findings shed light on SlSYTA's negative regulation of pivotal aspects of pattern-triggered immunity (PTI) defense, notably hindering the reactive oxygen species (ROS) burst, impeding stomatal closure, and curtailing callose deposition. Through meticulous scrutiny via transcriptome and metabolome analyses, our studies reveal SlSYTA's profound impact on diverse plant defense pathways, specifically influencing phenylpropanoid metabolism, hormone signaling, and oxidative phosphorylation, primarily via NADPH synthesis modulation in the pentose phosphate pathway, and ultimately interplay within ROS signaling. Collectively, our research presents groundbreaking insights into the intricate molecular mechanisms governing plant immunity, emphasizing the significant role of SlSYTA in orchestrating plant responses to biotic stress.
突触结合蛋白A(SYTA)以其在哺乳动物囊泡运输中不可或缺的作用而闻名,最近因其潜在的调节功能在植物生物学中受到关注。本研究精心探究了SlSYTA在植物免疫中的作用,重点关注其对影响番茄的一系列病原体的反应。我们的全面研究发现,SlSYTA过表达会增加对烟草花叶病毒(TMV)、丁香假单胞菌番茄致病变种(Pseudomonas syringae pv. tomato)DC3000的易感性,而RNA干扰(RNAi)植物对这些病原体表现出强大而全面的抗性。值得注意的是,我们的研究结果揭示了SlSYTA对模式触发免疫(PTI)防御关键方面的负调控,特别是阻碍活性氧(ROS)爆发、阻碍气孔关闭和减少胼胝质沉积。通过转录组和代谢组分析的细致研究,我们的研究揭示了SlSYTA对多种植物防御途径的深远影响,主要通过磷酸戊糖途径中NADPH合成的调节,具体影响苯丙烷代谢、激素信号传导和氧化磷酸化,并最终在ROS信号传导中相互作用。总体而言,我们的研究为控制植物免疫的复杂分子机制提供了开创性的见解,强调了SlSYTA在协调植物对生物胁迫反应中的重要作用。