Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
School of Artificial Intelligence and Data Science, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
Commun Biol. 2024 May 25;7(1):639. doi: 10.1038/s42003-024-06349-5.
Efficiently mapping of cell types in situ remains a major challenge in spatial transcriptomics. Most spot deconvolution tools ignore spatial coordinate information and perform extremely slow on large datasets. Here, we introduce SpatialPrompt, a spatially aware and scalable tool for spot deconvolution and domain identification. SpatialPrompt integrates gene expression, spatial location, and single-cell RNA sequencing (scRNA-seq) dataset as reference to accurately infer cell-type proportions of spatial spots. SpatialPrompt uses non-negative ridge regression and graph neural network to efficiently capture local microenvironment information. Our extensive benchmarking analysis on Visium, Slide-seq, and MERFISH datasets demonstrated superior performance of SpatialPrompt over 15 existing tools. On mouse hippocampus dataset, SpatialPrompt achieves spot deconvolution and domain identification within 2 minutes for 50,000 spots. Overall, domain identification using SpatialPrompt was 44 to 150 times faster than existing methods. We build a database housing 40 plus curated scRNA-seq datasets for seamless integration with SpatialPrompt for spot deconvolution.
在空间转录组学中,有效地对细胞类型进行原位映射仍然是一个主要挑战。大多数斑点去卷积工具忽略空间坐标信息,并且在大型数据集上的速度非常慢。在这里,我们介绍了 SpatialPrompt,这是一种用于斑点去卷积和领域识别的具有空间意识和可扩展的工具。SpatialPrompt 将基因表达、空间位置和单细胞 RNA 测序 (scRNA-seq) 数据集集成作为参考,以准确推断空间斑点的细胞类型比例。SpatialPrompt 使用非负岭回归和图神经网络来有效地捕获局部微环境信息。我们在 Visium、Slide-seq 和 MERFISH 数据集上进行的广泛基准分析表明,SpatialPrompt 在 15 种现有工具中的表现优于其他工具。在小鼠海马数据集上,SpatialPrompt 可在 2 分钟内对 50,000 个斑点进行斑点去卷积和领域识别。总的来说,使用 SpatialPrompt 进行领域识别比现有方法快 44 到 150 倍。我们构建了一个数据库,其中包含 40 多个经过精心整理的 scRNA-seq 数据集,可与 SpatialPrompt 无缝集成进行斑点去卷积。