Suppr超能文献

一种基于多维粒子群优化的脑磁共振成像肿瘤分割算法。

A Multidimensional Particle Swarm Optimization-Based Algorithm for Brain MRI Tumor Segmentation.

作者信息

Boga Zsombor, Sándor Csanád, Kovács Péter

机构信息

Faculty of Mathematics and Computer Science, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania.

Faculty of Informatics, Eötvös Loránd University, 1117 Budapest, Hungary.

出版信息

Sensors (Basel). 2025 Apr 29;25(9):2800. doi: 10.3390/s25092800.

Abstract

Particle Swarm Optimization (PSO) has been extensively applied to optimization tasks in various domains, including image segmentation. In this work, we present a clustering-based segmentation algorithm that employs a multidimensional variant of PSO. Unlike conventional methods that require a predefined number of segments, our approach automatically selects an optimal segmentation granularity based on specified similarity criteria. This strategy effectively isolates brain tumors by incorporating both grayscale intensity and spatial information across multiple MRI modalities, allowing the method to be reliably tuned using a limited amount of training data. We further demonstrate how integrating these initial segmentations with a random forest classifier (RFC) enhances segmentation precision. Using MRI data from the RSNA-ASNR-MICCAI brain tumor segmentation (BraTS) challenge, our method achieves robust results with reduced reliance on extensive labeled datasets, offering a more efficient path toward accurate, clinically relevant tumor segmentation.

摘要

粒子群优化算法(PSO)已被广泛应用于包括图像分割在内的各个领域的优化任务中。在这项工作中,我们提出了一种基于聚类的分割算法,该算法采用了PSO的多维变体。与需要预定义段数的传统方法不同,我们的方法基于指定的相似性标准自动选择最佳分割粒度。该策略通过整合多个MRI模态的灰度强度和空间信息,有效地分离出脑肿瘤,从而使该方法能够使用有限的训练数据进行可靠的调整。我们进一步展示了如何将这些初始分割与随机森林分类器(RFC)相结合来提高分割精度。使用来自RSNA-ASNR-MICCAI脑肿瘤分割(BraTS)挑战赛的MRI数据,我们的方法在减少对大量标记数据集依赖的情况下取得了稳健的结果,为实现准确的、与临床相关的肿瘤分割提供了一条更有效的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14bb/12074365/261fe3c666cc/sensors-25-02800-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验