Suppr超能文献

利用遥感技术估算紫花苜蓿生物量积累的遗传参数及生长曲线稳定性建模。

Remote sensing for estimating genetic parameters of biomass accumulation and modeling stability of growth curves in alfalfa.

机构信息

Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.

Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA.

出版信息

G3 (Bethesda). 2024 Nov 6;14(11). doi: 10.1093/g3journal/jkae200.

Abstract

Multispectral imaging by unoccupied aerial vehicles provides a nondestructive, high-throughput approach to measure biomass accumulation over successive alfalfa (Medicago sativa L. subsp. sativa) harvests. Information from estimated growth curves can be used to infer harvest biomass and to gain insights into the relationship between growth dynamics and forage biomass stability across cuttings and years. In this study, multispectral imaging and several common vegetation indices were used to estimate genetic parameters and model growth of alfalfa cultivars to determine the longitudinal relationship between vegetation indices and forage biomass. Results showed moderate heritability for vegetation indices, with median plot level heritability ranging from 0.11 to 0.64, across multiple cuttings in three trials planted in Ithaca, NY, and Las Cruces, NM. Genetic correlations between the normalized difference vegetation index and forage biomass were moderate to high across trials, cuttings, and the timing of multispectral image capture. To evaluate the relationship between growth parameters and forage biomass stability across cuttings and environmental conditions, random regression modeling approaches were used to estimate the growth parameters of cultivars for each cutting and the variance in growth was compared to the variance in genetic estimates of forage biomass yield across cuttings. These analyses revealed high correspondence between stability in growth parameters and stability of forage yield. The results of this study indicate that vegetation indices are effective at modeling genetic components of biomass accumulation, presenting opportunities for more efficient screening of cultivars and new longitudinal modeling approaches that can provide insights into temporal factors influencing cultivar stability.

摘要

多光谱成像由无人飞行器提供了一种非破坏性的、高通量的方法来测量连续的紫花苜蓿(Medicago sativa L. subsp. sativa)收获期间的生物量积累。从估计的生长曲线中可以推断出收获的生物量,并深入了解在切割和年份之间生长动态与饲料生物量稳定性之间的关系。在这项研究中,多光谱成像和几种常见的植被指数被用于估计紫花苜蓿品种的遗传参数和模型生长,以确定植被指数和饲料生物量之间的纵向关系。结果表明,植被指数具有中等的遗传力,中位数地块水平遗传力范围为 0.11 到 0.64,在纽约伊萨卡和新墨西哥州拉斯克鲁塞斯的三个试验中进行了多次切割。归一化差异植被指数和饲料生物量之间的遗传相关性在试验、切割和多光谱图像捕获时间上均为中等至高度相关。为了评估在切割和环境条件下生长参数和饲料生物量稳定性之间的关系,使用随机回归建模方法来估计每个切割的品种的生长参数,并比较生长参数的方差与遗传估计的饲料生物量产量的方差。这些分析揭示了生长参数稳定性与饲料产量稳定性之间的高度一致性。本研究的结果表明,植被指数在建模生物量积累的遗传组成方面是有效的,为更有效地筛选品种和新的纵向建模方法提供了机会,这些方法可以深入了解影响品种稳定性的时间因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验