School of Education, University of California, Irvine, Irvine, CA, USA.
Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany.
Nat Hum Behav. 2024 Aug;8(8):1448-1459. doi: 10.1038/s41562-024-01939-z. Epub 2024 Aug 23.
Making causal inferences regarding human behaviour is difficult given the complex interplay between countless contributors to behaviour, including factors in the external world and our internal states. We provide a non-technical conceptual overview of challenges and opportunities for causal inference on human behaviour. The challenges include our ambiguous causal language and thinking, statistical under- or over-control, effect heterogeneity, interference, timescales of effects and complex treatments. We explain how methods optimized for addressing one of these challenges frequently exacerbate other problems. We thus argue that clearly specified research questions are key to improving causal inference from data. We suggest a triangulation approach that compares causal estimates from (quasi-)experimental research with causal estimates generated from observational data and theoretical assumptions. This approach allows a systematic investigation of theoretical and methodological factors that might lead estimates to converge or diverge across studies.
鉴于人类行为中无数行为促成因素的复杂相互作用,包括外部世界因素和我们的内部状态,要对人类行为做出因果推断是困难的。我们提供了一个关于人类行为因果推断的挑战和机遇的非技术性概念概述。挑战包括我们模棱两可的因果语言和思维、统计上的过度或不足控制、效应异质性、干扰、效应的时间尺度和复杂的处理。我们解释了针对这些挑战之一进行优化的方法如何经常加剧其他问题。因此,我们认为,明确规定的研究问题是从数据中提高因果推断的关键。我们建议采用三角分析方法,将(准)实验研究中的因果估计与来自观察数据和理论假设的因果估计进行比较。这种方法可以系统地研究可能导致估计在不同研究中趋同或发散的理论和方法因素。