Yeghaian M, Bodalal Z, Tareco Bucho T M, Kurilova I, Blank C U, Smit E F, van der Heijden M S, Nguyen-Kim T D L, van den Broek D, Beets-Tan R G H, Trebeschi S
Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
Immunooncol Technol. 2024 Jul 9;24:100723. doi: 10.1016/j.iotech.2024.100723. eCollection 2024 Dec.
Integrating complementary diagnostic data sources promises enhanced robustness in the predictive performance of artificial intelligence (AI) models, a crucial requirement for future clinical validation/implementation. In this study, we investigate the potential value of integrating data from noninvasive diagnostic modalities, including chest computed tomography (CT) imaging, routine laboratory blood tests, and clinical parameters, to retrospectively predict 1-year survival in a cohort of patients with advanced non-small-cell lung cancer, melanoma, and urothelial cancer treated with immunotherapy.
The study included 475 patients, of whom 444 had longitudinal CT scans and 475 had longitudinal laboratory data. An ensemble of AI models was trained on data from each diagnostic modality, and subsequently, a model-agnostic integration approach was adopted for combining the prediction probabilities of each modality and producing an integrated decision.
Integrating different diagnostic data demonstrated a modest increase in predictive performance. The highest area under the curve (AUC) was achieved by CT and laboratory data integration (AUC of 0.83, 95% confidence interval 0.81-0.85, < 0.001), whereas the performance of individual models trained on laboratory and CT data independently yielded AUCs of 0.81 and 0.73, respectively.
In our retrospective cohort, integrating different noninvasive data modalities improved performance.
整合互补的诊断数据源有望提高人工智能(AI)模型预测性能的稳健性,这是未来临床验证/实施的关键要求。在本研究中,我们调查了整合来自非侵入性诊断方式的数据(包括胸部计算机断层扫描(CT)成像、常规实验室血液检测和临床参数)的潜在价值,以回顾性预测接受免疫治疗的晚期非小细胞肺癌、黑色素瘤和尿路上皮癌患者队列的1年生存率。
该研究纳入了475例患者,其中444例有纵向CT扫描数据,475例有纵向实验室数据。在来自每种诊断方式的数据上训练一组AI模型,随后,采用一种与模型无关的整合方法来组合每种方式的预测概率并做出综合决策。
整合不同的诊断数据显示预测性能有适度提高。CT和实验室数据整合实现了最高的曲线下面积(AUC)(AUC为0.83,95%置信区间0.81 - 0.85,<0.001),而分别在实验室数据和CT数据上训练的单个模型的性能产生的AUC分别为0.81和0.73。
在我们的回顾性队列中,整合不同的非侵入性数据方式可提高性能。