Suppr超能文献

一种基于非增强CT的深度学习诊断系统,用于筛查肺癌患者中新冠病毒感染的高风险人群

A non-enhanced CT-based deep learning diagnostic system for COVID-19 infection at high risk among lung cancer patients.

作者信息

Du Tianming, Sun Yihao, Wang Xinghao, Jiang Tao, Xu Ning, Boukhers Zeyd, Grzegorzek Marcin, Sun Hongzan, Li Chen

机构信息

College of Medicine and Biological information Engineering, Northeastern University, Shenyang, China.

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

出版信息

Front Med (Lausanne). 2024 Aug 12;11:1444708. doi: 10.3389/fmed.2024.1444708. eCollection 2024.

Abstract

BACKGROUND

Pneumonia and lung cancer have a mutually reinforcing relationship. Lung cancer patients are prone to contracting COVID-19, with poorer prognoses. Additionally, COVID-19 infection can impact anticancer treatments for lung cancer patients. Developing an early diagnostic system for COVID-19 pneumonia can help improve the prognosis of lung cancer patients with COVID-19 infection.

METHOD

This study proposes a neural network for COVID-19 diagnosis based on non-enhanced CT scans, consisting of two 3D convolutional neural networks (CNN) connected in series to form two diagnostic modules. The first diagnostic module classifies COVID-19 pneumonia patients from other pneumonia patients, while the second diagnostic module distinguishes severe COVID-19 patients from ordinary COVID-19 patients. We also analyzed the correlation between the deep learning features of the two diagnostic modules and various laboratory parameters, including KL-6.

RESULT

The first diagnostic module achieved an accuracy of 0.9669 on the training set and 0.8884 on the test set, while the second diagnostic module achieved an accuracy of 0.9722 on the training set and 0.9184 on the test set. Strong correlation was observed between the deep learning parameters of the second diagnostic module and KL-6.

CONCLUSION

Our neural network can differentiate between COVID-19 pneumonia and other pneumonias on CT images, while also distinguishing between ordinary COVID-19 patients and those with white lung. Patients with white lung in COVID-19 have greater alveolar damage compared to ordinary COVID-19 patients, and our deep learning features can serve as an imaging biomarker.

摘要

背景

肺炎与肺癌存在相互促进的关系。肺癌患者易感染新型冠状病毒肺炎(COVID-19),且预后较差。此外,COVID-19感染会影响肺癌患者的抗癌治疗。开发一种针对COVID-19肺炎的早期诊断系统有助于改善感染COVID-19的肺癌患者的预后。

方法

本研究提出一种基于非增强CT扫描的用于COVID-19诊断的神经网络,由两个串联的3D卷积神经网络(CNN)组成,形成两个诊断模块。第一个诊断模块将COVID-19肺炎患者与其他肺炎患者区分开来,而第二个诊断模块则将重症COVID-19患者与普通COVID-19患者区分开来。我们还分析了两个诊断模块的深度学习特征与包括KL-6在内的各种实验室参数之间的相关性。

结果

第一个诊断模块在训练集上的准确率为0.9669,在测试集上的准确率为0.8884;第二个诊断模块在训练集上的准确率为0.9722,在测试集上的准确率为0.9184。观察到第二个诊断模块的深度学习参数与KL-6之间存在强相关性。

结论

我们的神经网络能够在CT图像上区分COVID-19肺炎与其他肺炎,同时也能区分普通COVID-19患者和白肺患者。与普通COVID-19患者相比,COVID-19白肺患者的肺泡损伤更大,我们的深度学习特征可作为一种影像生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02e1/11345710/4efb4adea583/fmed-11-1444708-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验