文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载有二氧化硅纳米颗粒的冻干聚乙烯醇和壳聚糖支架用于组织再生。

Lyophilized Polyvinyl Alcohol and Chitosan Scaffolds Pre-Loaded with Silicon Dioxide Nanoparticles for Tissue Regeneration.

机构信息

Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia.

Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B Número 36-00, Cali 760001, Colombia.

出版信息

Molecules. 2024 Aug 14;29(16):3850. doi: 10.3390/molecules29163850.


DOI:10.3390/molecules29163850
PMID:39202929
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11356782/
Abstract

Materials with a soft tissue regenerative capacity can be produced using biopolymer scaffolds and nanomaterials, which allow injured tissue to recover without any side effects or limitations. Four formulations were prepared using polyvinyl alcohol (PVA) and chitosan (CS), with silicon dioxide nanoparticles (NPs-SiO) incorporated using the freeze-drying method at a temperature of -50 °C. TGA and DSC showed no change in thermal degradation, with glass transition temperatures around 74 °C and 77 °C. The interactions between the hydroxyl groups of PVA and CS remained stable. Scanning electron microscopy (SEM) indicated that the incorporation of NPs-SiO complemented the freeze-drying process, enabling the dispersion of the components on the polymeric matrix and obtaining structures with a small pore size (between 30 and 60 μm) and large pores (between 100 and 160 μm). The antimicrobial capacity analysis of Gram-positive and Gram-negative bacteria revealed that the scaffolds inhibited around 99% of , , and ATCC 55804. The subdermal implantation analysis demonstrated tissue growth and proliferation, with good biocompatibility, promoting the healing process for tissue restoration through the simultaneous degradation and formation of type I collagen fibers. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.

摘要

采用生物聚合物支架和纳米材料可以制备具有软组织再生能力的材料,这使得受伤组织能够在没有任何副作用或限制的情况下恢复。使用聚乙烯醇(PVA)和壳聚糖(CS)制备了四种配方,使用冷冻干燥法在-50°C 的温度下掺入二氧化硅纳米颗粒(NPs-SiO)。TGA 和 DSC 显示热降解没有变化,玻璃化转变温度约为 74°C 和 77°C。PVA 和 CS 中的羟基之间的相互作用保持稳定。扫描电子显微镜(SEM)表明,NPs-SiO 的掺入补充了冷冻干燥过程,使成分在聚合物基质上分散,并获得具有小孔径(30 至 60μm)和大孔(100 至 160μm)的结构。对革兰氏阳性菌和革兰氏阴性菌的抗菌能力分析表明,支架抑制了约 99%的 、 和 ATCC 55804。皮下植入分析表明组织生长和增殖具有良好的生物相容性,通过同时降解和形成 I 型胶原纤维促进组织修复的愈合过程。所有结果都扩展了组织工程和再生医学的边界,突出了纳米颗粒在优化支架性能方面的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/c0dbab26f508/molecules-29-03850-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/53266e2754c4/molecules-29-03850-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/f12be74b8a51/molecules-29-03850-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/3354bbf28c58/molecules-29-03850-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/b6277cf7fabe/molecules-29-03850-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/19e148753532/molecules-29-03850-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/e7c7f16eb148/molecules-29-03850-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/a9012ff77b64/molecules-29-03850-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/e64308577d37/molecules-29-03850-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/d22a670d3ff8/molecules-29-03850-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/d33b04f7d005/molecules-29-03850-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/c0dbab26f508/molecules-29-03850-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/53266e2754c4/molecules-29-03850-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/f12be74b8a51/molecules-29-03850-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/3354bbf28c58/molecules-29-03850-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/b6277cf7fabe/molecules-29-03850-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/19e148753532/molecules-29-03850-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/e7c7f16eb148/molecules-29-03850-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/a9012ff77b64/molecules-29-03850-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/e64308577d37/molecules-29-03850-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/d22a670d3ff8/molecules-29-03850-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/d33b04f7d005/molecules-29-03850-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a732/11356782/c0dbab26f508/molecules-29-03850-g011.jpg

相似文献

[1]
Lyophilized Polyvinyl Alcohol and Chitosan Scaffolds Pre-Loaded with Silicon Dioxide Nanoparticles for Tissue Regeneration.

Molecules. 2024-8-14

[2]
Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering.

Mater Sci Eng C Mater Biol Appl. 2015-12-30

[3]
Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.

Colloids Surf B Biointerfaces. 2012-5-31

[4]
Preparation of Chitosan/Poly(Vinyl Alcohol) Nanocomposite Films Incorporated with Oxidized Carbon Nano-Onions (Multi-Layer Fullerenes) for Tissue-Engineering Applications.

Biomolecules. 2019-11-1

[5]
Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds.

Macromol Biosci. 2021-4

[6]
Biocompatible and Antimicrobial Electrospun Membranes Based on Nanocomposites of Chitosan/Poly (Vinyl Alcohol)/Graphene Oxide.

Int J Mol Sci. 2019-6-19

[7]
Biological activity of lyophilized chitosan scaffolds with inclusion of chitosan and zinc oxide nanoparticles.

RSC Adv. 2024-4-25

[8]
Synthesis and Application of Scaffolds of Chitosan-Graphene Oxide by the Freeze-Drying Method for Tissue Regeneration.

Molecules. 2018-10-16

[9]
Evaluation of cytocompatibility and cell proliferation of electrospun chitosan/polyvinyl alcohol/montmorillonite clay scaffold with l929 cell lines in skin regeneration activity and in silico molecular docking studies.

Int J Biol Macromol. 2024-5

[10]
Polyvinyl Alcohol-Chitosan Scaffold for Tissue Engineering and Regenerative Medicine Application: A Review.

Mar Drugs. 2023-5-17

引用本文的文献

[1]
Histology Assessment of Chitosan-Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles.

Molecules. 2025-1-12

本文引用的文献

[1]
Chitosan-Silica Composite Aerogel for the Adsorption of Cupric Ions.

Gels. 2024-3-11

[2]
Chitosan-Polyvinyl Alcohol Nanocomposites for Regenerative Therapy.

Polymers (Basel). 2023-12-1

[3]
The size-dependent in vivo toxicity of amorphous silica nanoparticles: A systematic review.

Ecotoxicol Environ Saf. 2024-2

[4]
Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications.

Pharmaceutics. 2023-11-16

[5]
Chitosan scaffolds: Expanding horizons in biomedical applications.

Carbohydr Polym. 2024-1-1

[6]
New Polyvinyl Alcohol/Succinoglycan-Based Hydrogels for pH-Responsive Drug Delivery.

Polymers (Basel). 2023-7-11

[7]
Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review.

Materials (Basel). 2023-6-8

[8]
Chelating silica nanoparticles for efficient antibiotic delivery and particle imaging in Gram-negative bacteria.

Nanoscale Adv. 2023-2-20

[9]
Silver Nanoparticles Loaded on Chitosan-g-PVA Hydrogel for the Wound-Healing Applications.

Molecules. 2023-4-5

[10]
Morphological, Mechanical, and Antimicrobial Properties of PBAT/Poly(methyl methacrylate--maleic anhydride)-SiO Composite Films for Food Packaging Applications.

Polymers (Basel). 2022-12-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索