Suppr超能文献

因果推断中的松弛双稳健估计

Relaxed Doubly Robust Estimation in Causal Inference.

作者信息

Xu Tinghui, Zhao Jiwei

机构信息

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA.

出版信息

Stat Theory Relat Fields. 2024;8(1):69-79. doi: 10.1080/24754269.2024.2313826. Epub 2024 Feb 8.

Abstract

Causal inference plays a crucial role in biomedical studies and social sciences. Over the years, researchers have devised various methods to facilitate causal inference, particularly in observational studies. Among these methods, the doubly robust estimator distinguishes itself through a remarkable feature: it retains its consistency even when only one of the two components-either the propensity score model or the outcome mean model-is correctly specified, rather than demanding correctness in both simultaneously. In this paper, we focus on scenarios where semiparametric models are employed for both the propensity score and the outcome mean. Semiparametric models offer a valuable blend of interpretability akin to parametric models and the adaptability characteristic of nonparametric models. In this context, achieving correct model specification involves both accurately specifying the unknown function and consistently estimating the unknown parameter. We introduce a novel concept: the relaxed doubly robust estimator. It operates in a manner reminiscent of the traditional doubly robust estimator but with a reduced requirement for double robustness. In essence, it only mandates the consistent estimate of the unknown parameter, without requiring the correct specification of the unknown function. This means that it only necessitates a partially correct model specification. We conduct a thorough analysis to establish the double robustness and semiparametric efficiency of our proposed estimator. Furthermore, we bolster our findings with comprehensive simulation studies to illustrate the practical implications of our approach.

摘要

因果推断在生物医学研究和社会科学中起着至关重要的作用。多年来,研究人员设计了各种方法来促进因果推断,特别是在观察性研究中。在这些方法中,双重稳健估计量因其显著特征而脱颖而出:即使倾向得分模型或结果均值模型这两个组成部分中只有一个被正确设定,而不是要求两者同时正确设定,它仍能保持其一致性。在本文中,我们关注倾向得分和结果均值均采用半参数模型的情形。半参数模型提供了类似于参数模型的可解释性与非参数模型的适应性特征的有价值融合。在此背景下,实现正确的模型设定既涉及准确设定未知函数,又涉及一致估计未知参数。我们引入一个新概念:松弛双重稳健估计量。它的运作方式类似于传统双重稳健估计量,但对双重稳健性的要求有所降低。本质上,它只要求对未知参数进行一致估计,而不要求对未知函数进行正确设定。这意味着它只需要部分正确的模型设定。我们进行了深入分析,以确立我们提出的估计量的双重稳健性和半参数效率。此外,我们通过全面的模拟研究来支持我们的发现,以说明我们方法的实际意义。

相似文献

1
Relaxed Doubly Robust Estimation in Causal Inference.因果推断中的松弛双稳健估计
Stat Theory Relat Fields. 2024;8(1):69-79. doi: 10.1080/24754269.2024.2313826. Epub 2024 Feb 8.
2
Data-Adaptive Bias-Reduced Doubly Robust Estimation.数据自适应偏差减少的双重稳健估计
Int J Biostat. 2016 May 1;12(1):253-82. doi: 10.1515/ijb-2015-0029.
3
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验