Cancer Biomarker Development, Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA.
Translational Medicine, Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA.
Mol Oncol. 2024 Nov;18(11):2607-2611. doi: 10.1002/1878-0261.13724. Epub 2024 Aug 30.
The incorporation of novel therapeutic agents such as antibody-drug conjugates, radio-conjugates, T-cell engagers, and chimeric antigen receptor cell therapies represents a paradigm shift in oncology. Cell-surface target quantification, quantitative assessment of receptor internalization, and changes in the tumor microenvironment (TME) are essential variables in the development of biomarkers for patient selection and therapeutic response. Assessing these parameters requires capabilities that transcend those of traditional biomarker approaches based on immunohistochemistry, in situ hybridization and/or sequencing assays. Computational pathology is emerging as a transformative solution in this new therapeutic landscape, enabling detailed assessment of not only target presence, expression levels, and intra-tumor distribution but also of additional phenotypic features of tumor cells and their surrounding TME. Here, we delineate the pivotal role of computational pathology in enhancing the efficacy and specificity of these advanced therapeutics, underscoring the integration of novel artificial intelligence models that promise to revolutionize biomarker discovery and drug development.
新型治疗药物的应用,如抗体药物偶联物、放射性药物偶联物、T 细胞衔接器和嵌合抗原受体细胞疗法,代表了肿瘤学领域的范式转变。细胞表面靶标定量、受体内化的定量评估以及肿瘤微环境 (TME) 的变化是为患者选择和治疗反应开发生物标志物的重要变量。评估这些参数需要超越基于免疫组织化学、原位杂交和/或测序分析的传统生物标志物方法的能力。计算病理学正在成为这一新治疗领域的变革性解决方案,不仅能够详细评估靶标存在、表达水平和肿瘤内分布,还能够评估肿瘤细胞及其周围 TME 的其他表型特征。在这里,我们阐述了计算病理学在提高这些先进治疗方法的疗效和特异性方面的关键作用,强调了新型人工智能模型的整合有望彻底改变生物标志物发现和药物开发。