Suppr超能文献

整合表观基因组暴露特征发现。

Integrated epigenomic exposure signature discovery.

机构信息

Health Business Unit, Battelle Memorial Institute, Columbus, OH 43201, USA.

Nationwide Insurance, Columbus, OH 43215, USA.

出版信息

Epigenomics. 2024;16(14):1013-1029. doi: 10.1080/17501911.2024.2375187. Epub 2024 Sep 3.

Abstract

The epigenome influences gene regulation and phenotypes in response to exposures. Epigenome assessment can determine exposure history aiding in diagnosis. Here we developed and implemented a machine learning algorithm, the exposure signature discovery algorithm (ESDA), to identify the most important features present in multiple epigenomic and transcriptomic datasets to produce an integrated exposure signature (ES). Signatures were developed for seven exposures including , human immunodeficiency virus, SARS-CoV-2, influenza A (H3N2) virus and vaccinations. ESs differed in the assays and features selected and predictive value. Integrated ESs can potentially be utilized for diagnosis or forensic attribution. The ESDA identifies the most distinguishing features enabling diagnostic panel development for future precision health deployment.

摘要

表观基因组影响基因调控和表型对暴露的反应。表观基因组评估可以确定暴露史,有助于诊断。在这里,我们开发并实施了一种机器学习算法,即暴露特征发现算法(ESDA),以确定在多个表观基因组和转录组数据集中存在的最重要特征,从而产生综合暴露特征(ES)。为七种暴露物(包括人类免疫缺陷病毒、SARS-CoV-2、甲型流感(H3N2)病毒和疫苗接种)开发了特征。ES 在所选检测和特征以及预测值方面存在差异。综合 ES 可能可用于诊断或法医归因。ESDA 确定了最具区别性的特征,为未来精准健康部署的诊断小组开发提供了可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6504/11404615/52c8570cfcb7/IEPI_A_2375187_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验