Suppr超能文献

利用深度学习实现对泛癌数字病理切片倍性的数字量化

Towards Digital Quantification of Ploidy from Pan-Cancer Digital Pathology Slides using Deep Learning.

作者信息

Carrillo-Perez Francisco, Cramer Eric M, Pizurica Marija, Andor Noemi, Gevaert Olivier

机构信息

Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, 94304, CA, USA.

Department of Biomedical Engineering, Oregon Health & Science University (OHSU), Portland, 97239, OR, USA.

出版信息

bioRxiv. 2024 Aug 20:2024.08.19.608555. doi: 10.1101/2024.08.19.608555.

Abstract

Abnormal DNA ploidy, found in numerous cancers, is increasingly being recognized as a contributor in driving chromosomal instability, genome evolution, and the heterogeneity that fuels cancer cell progression. Furthermore, it has been linked with poor prognosis of cancer patients. While next-generation sequencing can be used to approximate tumor ploidy, it has a high error rate for near-euploid states, a high cost and is time consuming, motivating alternative rapid quantification methods. We introduce PloiViT, a transformer-based model for tumor ploidy quantification that outperforms traditional machine learning models, enabling rapid and cost-effective quantification directly from pathology slides. We trained PloiViT on a dataset of fifteen cancer types from The Cancer Genome Atlas and validated its performance in multiple independent cohorts. Additionally, we explored the impact of self-supervised feature extraction on performance. PloiViT, using self-supervised features, achieved the lowest prediction error in multiple independent cohorts, exhibiting better generalization capabilities. Our findings demonstrate that PloiViT predicts higher ploidy values in aggressive cancer groups and patients with specific mutations, validating PloiViT potential as complementary for ploidy assessment to next-generation sequencing data. To further promote its use, we release our models as a user-friendly inference application and a Python package for easy adoption and use.

摘要

异常DNA倍性在多种癌症中都有发现,越来越被认为是导致染色体不稳定、基因组进化以及推动癌细胞进展的异质性的一个因素。此外,它还与癌症患者的不良预后有关。虽然下一代测序可用于估算肿瘤倍性,但对于近整倍体状态,其错误率高、成本高且耗时,这促使人们寻求替代的快速定量方法。我们介绍了PloiViT,一种基于Transformer的肿瘤倍性量化模型,其性能优于传统机器学习模型,能够直接从病理切片进行快速且经济高效的量化。我们在来自癌症基因组图谱的15种癌症类型的数据集上训练了PloiViT,并在多个独立队列中验证了其性能。此外,我们还探讨了自监督特征提取对性能的影响。使用自监督特征的PloiViT在多个独立队列中实现了最低的预测误差,展现出更好的泛化能力。我们的研究结果表明,PloiViT在侵袭性癌症组和具有特定突变的患者中预测出更高的倍性值,验证了PloiViT作为下一代测序数据倍性评估补充方法的潜力。为了进一步推广其应用,我们将我们的模型作为一个用户友好的推理应用程序和一个Python包发布,以便于采用和使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/546d/11370345/215d7857f597/nihpp-2024.08.19.608555v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验