Zhu Yuhui, Babazadeh-Naseri Ata, Brake Matthew R W, Akin John E, Li Geng, Lewis Valerae O, Fregly Benjamin J
Department of Mechanical Engineering, Rice University, Houston, TX, United States.
Department of Orthopedic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Front Bioeng Biotechnol. 2024 Aug 20;12:1420870. doi: 10.3389/fbioe.2024.1420870. eCollection 2024.
Three-dimensional (3D)-printed custom pelvic implants have become a clinically viable option for patients undergoing pelvic cancer surgery with resection of the hip joint. However, increased clinical utilization has also necessitated improved implant durability, especially with regard to the compression screws used to secure the implant to remaining pelvic bone. This study evaluated six different finite element (FE) screw modeling methods for predicting compression screw pullout and fatigue failure in a custom pelvic implant secured to bone using nine compression screws. Three modeling methods (tied constraints (TIE), bolt load with constant force (BL-CF), and bolt load with constant length (BL-CL)) generated screw axial forces using functionality built into Abaqus FE software; while the remaining three modeling methods (isotropic pseudo-thermal field (ISO), orthotropic pseudo-thermal field (ORT), and equal-and-opposite force field (FOR)) generated screw axial forces using iterative physics-based relationships that can be implemented in any FE software. The ability of all six modeling methods to match specified screw pretension forces and predict screw pullout and fatigue failure was evaluated using an FE model of a custom pelvic implant with total hip replacement. The applied hip contact forces in the FE model were estimated at two locations in a gait cycle. For each of the nine screws in the custom implant FE model, likelihood of screw pullout failure was predicted using maximum screw axial force, while likelihood of screw fatigue failure was predicted using maximum von Mises stress. The three iterative physics-based modeling methods and the non-iterative Abaqus BL-CL method produced nearly identical predictions for likelihood of screw pullout and fatigue failure, while the other two built-in Abaqus modeling methods yielded vastly different predictions. However, the Abaqus BL-CL method required the least computation time, largely because an iterative process was not needed to induce specified screw pretension forces. Of the three iterative methods, FOR required the fewest iterations and thus the least computation time. These findings suggest that the BL-CL screw modeling method is the best option when Abaqus is used for predicting screw pullout and fatigue failure in custom pelvis prostheses, while the iterative physics-based FOR method is the best option if FE software other than Abaqus is used.
对于接受髋关节切除的骨盆癌手术患者而言,三维(3D)打印定制骨盆植入物已成为一种临床上可行的选择。然而,临床应用的增加也对提高植入物的耐用性提出了要求,尤其是用于将植入物固定到剩余骨盆骨上的加压螺钉。本研究评估了六种不同的有限元(FE)螺钉建模方法,以预测使用九颗加压螺钉固定在骨头上的定制骨盆植入物中加压螺钉的拔出和疲劳失效情况。三种建模方法(绑定约束(TIE)、恒力螺栓载荷(BL-CF)和恒定长度螺栓载荷(BL-CL))利用Abaqus FE软件内置功能生成螺钉轴向力;而其余三种建模方法(各向同性伪热场(ISO)、正交各向异性伪热场(ORT)和等效力场(FOR))则使用可在任何FE软件中实现的基于迭代物理关系生成螺钉轴向力。使用全髋关节置换的定制骨盆植入物有限元模型,评估了所有六种建模方法匹配指定螺钉预紧力以及预测螺钉拔出和疲劳失效的能力。在步态周期的两个位置估计有限元模型中施加的髋关节接触力。对于定制植入物有限元模型中的九颗螺钉,使用最大螺钉轴向力预测螺钉拔出失效的可能性,而使用最大冯·米塞斯应力预测螺钉疲劳失效的可能性。三种基于迭代物理的建模方法和非迭代的Abaqus BL-CL方法对螺钉拔出和疲劳失效可能性的预测几乎相同,而另外两种Abaqus内置建模方法则产生了截然不同的预测结果。然而,Abaqus BL-CL方法所需的计算时间最少,这主要是因为不需要迭代过程来产生指定的螺钉预紧力。在三种迭代方法中,FOR所需的迭代次数最少,因此计算时间也最少。这些发现表明,当使用Abaqus预测定制骨盆假体中的螺钉拔出和疲劳失效时,BL-CL螺钉建模方法是最佳选择;而如果使用Abaqus以外的有限元软件,则基于迭代物理的FOR方法是最佳选择。