Suppr超能文献

通过基于遗传算法的特征选择和快速跳比特增强脑电图信号中的唤醒水平检测。

Enhancing Arousal Level Detection in EEG Signals through Genetic Algorithm-based Feature Selection and Fast Bit Hopping.

作者信息

Sheikhian Elnaz, Ghoshuni Majid, Azarnoosh Mahdi, Khalilzadeh Mohammad Mahdi

机构信息

Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

出版信息

J Med Signals Sens. 2024 Jul 25;14:20. doi: 10.4103/jmss.jmss_65_23. eCollection 2024.

Abstract

BACKGROUND

This study explores a novel approach to detecting arousal levels through the analysis of electroencephalography (EEG) signals. Leveraging the Faller database with data from 18 healthy participants, we employ a 64-channel EEG system.

METHODS

The approach we employ entails the extraction of ten frequency characteristics from every channel, culminating in a feature vector of 640 dimensions for each signal instance. To enhance classification accuracy, we employ a genetic algorithm for feature selection, treating it as a multiobjective optimization task. The approach utilizes fast bit hopping for efficiency, overcoming traditional bit-string limitations. A hybrid operator expedites algorithm convergence, and a solution selection strategy identifies the most suitable feature subset.

RESULTS

Experimental results demonstrate the method's effectiveness in detecting arousal levels across diverse states, with improvements in accuracy, sensitivity, and specificity. In scenario one, the proposed method achieves an average accuracy, sensitivity, and specificity of 93.11%, 98.37%, and 99.14%, respectively. In scenario two, the averages stand at 81.35%, 88.65%, and 84.64%.

CONCLUSIONS

The obtained results indicate that the proposed method has a high capability of detecting arousal levels in different scenarios. In addition, the advantage of employing the proposed feature reduction method has been demonstrated.

摘要

背景

本研究探索了一种通过分析脑电图(EEG)信号来检测唤醒水平的新方法。利用包含18名健康参与者数据的Faller数据库,我们采用了一个64通道的EEG系统。

方法

我们采用的方法是从每个通道提取十个频率特征,最终为每个信号实例生成一个640维的特征向量。为了提高分类准确率,我们采用遗传算法进行特征选择,将其视为一个多目标优化任务。该方法利用快速位跳变提高效率,克服了传统位串的局限性。一种混合算子加快了算法收敛速度,一种解选择策略确定了最合适的特征子集。

结果

实验结果证明了该方法在检测不同状态下唤醒水平方面的有效性,在准确率、灵敏度和特异性方面都有提高。在第一种情况下,所提出的方法分别实现了93.11%、98.37%和99.14%的平均准确率、灵敏度和特异性。在第二种情况下,平均值分别为81.35%、88.65%和84.64%。

结论

所得结果表明,所提出的方法在不同场景下具有较高的检测唤醒水平的能力。此外,还证明了采用所提出的特征约简方法的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8243/11373797/aa9460935e7a/JMSS-14-20-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验