Suppr超能文献

小麦分子改良中的事实、不确定性和机遇。

Facts, uncertainties, and opportunities in wheat molecular improvement.

机构信息

Department of Agronomy, Purdue University, West Lafayette, IN, USA.

Department of Agronomy and Plant Genetics, University of Minnesota, Northwest Research and Outreach Center, Crookston, MN, USA.

出版信息

Heredity (Edinb). 2024 Dec;133(6):371-380. doi: 10.1038/s41437-024-00721-1. Epub 2024 Sep 5.

Abstract

The year 2020 was a landmark year for wheat. The wheat HB4 event harboring a drought-resistant gene from sunflowers, received regulatory approval and was grown commercially in Argentina, with approval for food and feed in other countries. This, indeed, is many years after the adoption of genetic modifications in other crops. The lack of consumer acceptance and resulting trade barriers halted the commercialization of the earliest events and had a chilling effect on, especially, private Research & Development (R&D) investments. As regulations for modern breeding technologies such as genome-edited cultivars are being discussed and/or adopted across the globe, we would like to propose a framework to ensure that wheat is not left behind a second time as the potential benefits far outweigh the perceived risks. In this paper, after a review of the technical challenges wheat faces with the generation of trans- and cis-genic wheat varieties, we discuss some of the factors that could help demystify the risk/reward equation and thereby the consumer's reluctance or acceptance of these techniques for future wheat improvement. The advent of next-generation sequencing is shedding light on natural gene transfer between species and the number of perturbations other accepted techniques like mutagenesis create. The transition from classic breeding techniques and embracing transgenic, cisgenic, and genome editing approaches feels inevitable for wheat improvement if we are to develop climate-resilient wheat varieties to feed a growing world population.

摘要

2020 年是小麦具有里程碑意义的一年。含有向日葵抗旱基因的小麦 HB4 事件获得了监管部门的批准,并在阿根廷商业化种植,其他国家也批准其用于食品和饲料。这确实是在其他作物采用基因改造多年之后的事情了。由于缺乏消费者的认可和由此产生的贸易壁垒,最早的事件的商业化进程被停止,这对特别是私营部门的研究与开发(R&D)投资产生了寒蝉效应。随着全球范围内正在讨论和/或采用现代育种技术(如基因组编辑品种)的法规,我们希望提出一个框架,以确保小麦不会像以前一样再次被落下,因为其潜在的好处远远超过了人们对这些技术的感知风险。在本文中,在回顾了生成转基因和 cis- 基因小麦品种所面临的技术挑战之后,我们讨论了一些可能有助于揭开风险/回报等式的因素,从而使消费者对这些技术在未来小麦改良中的应用不再感到勉强或难以接受。新一代测序技术的出现揭示了物种之间自然基因转移的情况,以及其他一些被广泛接受的技术(如诱变)所产生的基因干扰数量。如果我们要开发出具有抗气候能力的小麦品种来养活不断增长的世界人口,那么从经典的育种技术过渡并采用转基因、cis- 基因和基因组编辑方法对于小麦改良来说感觉是不可避免的。

相似文献

1
Facts, uncertainties, and opportunities in wheat molecular improvement.
Heredity (Edinb). 2024 Dec;133(6):371-380. doi: 10.1038/s41437-024-00721-1. Epub 2024 Sep 5.
2
Tailoring crops with superior product quality through genome editing: an update.
Planta. 2023 Mar 22;257(5):86. doi: 10.1007/s00425-023-04112-4.
3
Genome editing in cereal crops: an overview.
Transgenic Res. 2021 Aug;30(4):461-498. doi: 10.1007/s11248-021-00259-6. Epub 2021 Jul 14.
4
CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives.
Biotechnol Adv. 2023 Dec;69:108248. doi: 10.1016/j.biotechadv.2023.108248. Epub 2023 Sep 2.
5
Genetic engineering of wheat--current challenges and opportunities.
Trends Biotechnol. 2006 Jul;24(7):305-11. doi: 10.1016/j.tibtech.2006.04.008. Epub 2006 May 6.
6
CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review.
Funct Integr Genomics. 2023 Aug 4;23(3):265. doi: 10.1007/s10142-023-01190-1.
7
Genome editing in fruit, ornamental, and industrial crops.
Transgenic Res. 2021 Aug;30(4):499-528. doi: 10.1007/s11248-021-00240-3. Epub 2021 Apr 6.
8
Present and future prospects for wheat improvement through genome editing and advanced technologies.
Plant Commun. 2021 Jun 5;2(4):100211. doi: 10.1016/j.xplc.2021.100211. eCollection 2021 Jul 12.
10
Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
Mol Plant. 2019 Aug 5;12(8):1047-1059. doi: 10.1016/j.molp.2019.06.009. Epub 2019 Jun 28.

引用本文的文献

1
From convention to innovation: the role of genetic modification and genome editing in Australian wheat breeding.
AoB Plants. 2025 Aug 7;17(5):plaf040. doi: 10.1093/aobpla/plaf040. eCollection 2025 Oct.
2
Virus-induced gene editing free from tissue culture.
Nat Plants. 2025 Jun 25. doi: 10.1038/s41477-025-02025-6.

本文引用的文献

1
Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation.
Nat Plants. 2023 Jun;9(6):908-925. doi: 10.1038/s41477-023-01406-z. Epub 2023 May 4.
2
The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation.
Nat Plants. 2022 Feb;8(2):110-117. doi: 10.1038/s41477-021-01085-8. Epub 2022 Jan 13.
4
Transcriptional regulation by CRISPR/dCas9 in common wheat.
Gene. 2022 Jan 10;807:145919. doi: 10.1016/j.gene.2021.145919. Epub 2021 Aug 26.
5
Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing.
Sci China Life Sci. 2022 Apr;65(4):731-738. doi: 10.1007/s11427-021-1949-9. Epub 2021 Aug 16.
6
CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
J Zhejiang Univ Sci B. 2021 Apr 15;22(4):253-284. doi: 10.1631/jzus.B2100009.
7
Control of seed size by jasmonate.
Sci China Life Sci. 2021 Aug;64(8):1215-1226. doi: 10.1007/s11427-020-1899-8. Epub 2021 Mar 25.
8
Genome engineering for crop improvement and future agriculture.
Cell. 2021 Mar 18;184(6):1621-1635. doi: 10.1016/j.cell.2021.01.005. Epub 2021 Feb 12.
9
Multiple wheat genomes reveal global variation in modern breeding.
Nature. 2020 Dec;588(7837):277-283. doi: 10.1038/s41586-020-2961-x. Epub 2020 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验