Suppr超能文献

人神经干细胞来源的人工细胞器改善氧化磷酸化。

Human neural stem cell-derived artificial organelles to improve oxidative phosphorylation.

机构信息

Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China.

National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China.

出版信息

Nat Commun. 2024 Sep 8;15(1):7855. doi: 10.1038/s41467-024-52171-2.

Abstract

Oxidative phosphorylation (OXPHOS) in the mitochondrial inner membrane is a therapeutic target in many diseases. Neural stem cells (NSCs) show progress in improving mitochondrial dysfunction in the central nervous system (CNS). However, translating neural stem cell-based therapies to the clinic is challenged by uncontrollable biological variability or heterogeneity, hindering uniform clinical safety and efficacy evaluations. We propose a systematic top-down design based on membrane self-assembly to develop neural stem cell-derived oxidative phosphorylating artificial organelles (SAOs) for targeting the central nervous system as an alternative to NSCs. We construct human conditionally immortal clone neural stem cells (iNSCs) as parent cells and use a streamlined closed operation system to prepare neural stem cell-derived highly homogenous oxidative phosphorylating artificial organelles. These artificial organelles act as biomimetic organelles to mimic respiration chain function and perform oxidative phosphorylation, thus improving ATP synthesis deficiency and rectifying excessive mitochondrial reactive oxygen species production. Conclusively, we provide a framework for a generalizable manufacturing procedure that opens promising prospects for disease treatment.

摘要

线粒体膜中的氧化磷酸化 (OXPHOS) 是许多疾病的治疗靶点。神经干细胞 (NSC) 在改善中枢神经系统 (CNS) 中的线粒体功能障碍方面取得了进展。然而,将基于神经干细胞的疗法转化为临床应用受到不可控的生物学变异性或异质性的挑战,阻碍了统一的临床安全性和疗效评估。我们提出了一种基于膜自组装的系统自上而下的设计,以开发源自神经干细胞的具有氧化磷酸化功能的人工细胞器 (SAO),作为 NSC 的替代品,用于靶向中枢神经系统。我们构建了人类条件永生化克隆神经干细胞 (iNSC) 作为亲本细胞,并使用简化的封闭操作系统来制备高度同质的源自神经干细胞的具有氧化磷酸化功能的人工细胞器。这些人工细胞器作为仿生细胞器,模拟呼吸链功能并进行氧化磷酸化,从而改善 ATP 合成缺陷并纠正过多的线粒体活性氧产生。总之,我们提供了一个通用制造程序的框架,为疾病治疗开辟了广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c06/11381526/8b9d5f012669/41467_2024_52171_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验