Suppr超能文献

定量蛋白质组学质量控制框架。

A Framework for Quality Control in Quantitative Proteomics.

机构信息

Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States.

Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States.

出版信息

J Proteome Res. 2024 Oct 4;23(10):4392-4408. doi: 10.1021/acs.jproteome.4c00363. Epub 2024 Sep 9.

Abstract

A thorough evaluation of the quality, reproducibility, and variability of bottom-up proteomics data is necessary at every stage of a workflow, from planning to analysis. We share vignettes applying adaptable quality control (QC) measures to assess sample preparation, system function, and quantitative analysis. System suitability samples are repeatedly measured longitudinally with targeted methods, and we share examples where they are used on three instrument platforms to identify severe system failures and track function over months to years. Internal QCs incorporated at the protein and peptide levels allow our team to assess sample preparation issues and to differentiate system failures from sample-specific issues. External QC samples prepared alongside our experimental samples are used to verify the consistency and quantitative potential of our results during batch correction and normalization before assessing biological phenotypes. We combine these controls with rapid analysis (Skyline), longitudinal QC metrics (AutoQC), and server-based data deposition (PanoramaWeb). We propose that this integrated approach to QC is a useful starting point for groups to facilitate rapid quality control assessment to ensure that valuable instrument time is used to collect the best quality data possible. Data are available on Panorama Public and ProteomeXchange under the identifier PXD051318.

摘要

在工作流程的每个阶段,从规划到分析,都有必要对自下而上的蛋白质组学数据的质量、可重复性和可变性进行全面评估。我们分享了应用适应性质量控制(QC)措施的实例,以评估样品制备、系统功能和定量分析。系统适用性样品采用靶向方法进行反复纵向测量,我们分享了在三个仪器平台上使用它们的示例,以识别严重的系统故障并跟踪数月至数年的功能。在蛋白质和肽水平上纳入的内部 QC 允许我们的团队评估样品制备问题,并将系统故障与特定于样品的问题区分开来。与我们的实验样品一起制备的外部 QC 样品用于在批处理校正和归一化期间验证结果的一致性和定量潜力,然后评估生物学表型。我们将这些对照与快速分析(Skyline)、纵向 QC 指标(AutoQC)和基于服务器的数据存储(PanoramaWeb)相结合。我们提出,这种集成的 QC 方法是一个有用的起点,可以帮助小组快速进行质量控制评估,以确保宝贵的仪器时间用于收集尽可能高质量的数据。数据可在 Panorama Public 和 ProteomeXchange 上以标识符 PXD051318 获得。

相似文献

1
A Framework for Quality Control in Quantitative Proteomics.定量蛋白质组学质量控制框架。
J Proteome Res. 2024 Oct 4;23(10):4392-4408. doi: 10.1021/acs.jproteome.4c00363. Epub 2024 Sep 9.
2
8
Incentives for preventing smoking in children and adolescents.预防儿童和青少年吸烟的激励措施。
Cochrane Database Syst Rev. 2017 Jun 6;6(6):CD008645. doi: 10.1002/14651858.CD008645.pub3.

引用本文的文献

9
Detection and Quantification of Drug-Protein Adducts in Human Liver.检测和定量人肝中药物-蛋白加合物。
J Proteome Res. 2024 Nov 1;23(11):5143-5152. doi: 10.1021/acs.jproteome.4c00663. Epub 2024 Oct 23.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验