Tomar Nikhil Kumar, Jha Debesh, Bagci Ulas, Ali Sharib
NepAL Applied Mathematics and Informatics Institute for Research (NAAMII), Kathmandu, Nepal.
Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA.
Med Image Comput Comput Assist Interv. 2022 Sep;13433:151-160. doi: 10.1007/978-3-031-16437-8_15. Epub 2022 Sep 16.
Colonoscopy is a gold standard procedure but is highly operator-dependent. Automated polyp segmentation, a precancerous precursor, can minimize missed rates and timely treatment of colon cancer at an early stage. Even though there are deep learning methods developed for this task, variability in polyp size can impact model training, thereby limiting it to the size attribute of the majority of samples in the training dataset that may provide sub-optimal results to differently sized polyps. In this work, we exploit and features in the form of text attention during training. We introduce an auxiliary classification task to weight the text-based embedding that allows network to learn additional feature representations that can distinctly adapt to differently sized polyps and can adapt to cases with multiple polyps. Our experimental results demonstrate that these added text embeddings improve the overall performance of the model compared to state-of-the-art segmentation methods. We explore four different datasets and provide insights for size-specific improvements. Our proposed (TGANet) can generalize well to variable-sized polyps in different datasets. Codes are available at https://github.com/nikhilroxtomar/TGANet.
结肠镜检查是一种金标准程序,但高度依赖操作人员。自动息肉分割作为癌前病变的先兆,可以将漏诊率降至最低,并在早期及时治疗结肠癌。尽管已经开发了用于此任务的深度学习方法,但息肉大小的变化会影响模型训练,从而将其限制在训练数据集中大多数样本的大小属性上,这可能会为不同大小的息肉提供次优结果。在这项工作中,我们在训练期间利用文本注意力形式的特征。我们引入了一个辅助分类任务来加权基于文本的嵌入,使网络能够学习额外的特征表示,这些表示可以明显地适应不同大小的息肉,并能适应有多发性息肉的情况。我们的实验结果表明,与最先进的分割方法相比,这些添加的文本嵌入提高了模型的整体性能。我们探索了四个不同的数据集,并提供了针对特定大小改进的见解。我们提出的TGANet可以很好地推广到不同数据集中大小可变的息肉。代码可在https://github.com/nikhilroxtomar/TGANet获取。