Wang Jing, Lim Chia S
Graduate School of Technology, Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia.
J Imaging. 2025 Mar 21;11(4):92. doi: 10.3390/jimaging11040092.
Automatic polyp segmentation in colonoscopic images is crucial for the early detection and treatment of colorectal cancer. However, complex backgrounds, diverse polyp morphologies, and ambiguous boundaries make this task difficult. To address these issues, we propose the Synergistic Multi-Granularity Rough Attention U-Net (S-MGRAUNet), which integrates three key modules: the Multi-Granularity Hybrid Filtering (MGHF) module for extracting multi-scale contextual information, the Dynamic Granularity Partition Synergy (DGPS) module for enhancing polyp-background differentiation through adaptive feature interaction, and the Multi-Granularity Rough Attention (MGRA) mechanism for further optimizing boundary recognition. Extensive experiments on the ColonDB and CVC-300 datasets demonstrate that S-MGRAUNet significantly outperforms existing methods while achieving competitive results on the Kvasir-SEG and ClinicDB datasets, validating its segmentation accuracy, robustness, and generalization capability, all while effectively reducing computational complexity. This study highlights the value of multi-granularity feature extraction and attention mechanisms, providing new insights and practical guidance for advancing multi-granularity theories in medical image segmentation.
结肠镜图像中的息肉自动分割对于结直肠癌的早期检测和治疗至关重要。然而,复杂的背景、多样的息肉形态以及模糊的边界使得这项任务具有挑战性。为了解决这些问题,我们提出了协同多粒度粗糙注意力U-Net(S-MGRAUNet),它集成了三个关键模块:用于提取多尺度上下文信息的多粒度混合滤波(MGHF)模块、用于通过自适应特征交互增强息肉-背景差异的动态粒度划分协同(DGPS)模块以及用于进一步优化边界识别的多粒度粗糙注意力(MGRA)机制。在ColonDB和CVC-300数据集上的大量实验表明,S-MGRAUNet显著优于现有方法,同时在Kvasir-SEG和ClinicDB数据集上取得了有竞争力的结果,验证了其分割准确性、鲁棒性和泛化能力,同时有效降低了计算复杂度。本研究突出了多粒度特征提取和注意力机制的价值,为推进医学图像分割中的多粒度理论提供了新的见解和实践指导。