Suppr超能文献

基于深度学习的脑 CT 解读算法对急诊科颅内出血临床决策的影响。

Impact of a deep learning-based brain CT interpretation algorithm on clinical decision-making for intracranial hemorrhage in the emergency department.

机构信息

Department of Emergency Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Institute for Innovation in Digital Healthcare, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

出版信息

Sci Rep. 2024 Sep 27;14(1):22292. doi: 10.1038/s41598-024-73589-0.

Abstract

Intracranial hemorrhage is a critical emergency that requires prompt and accurate diagnosis in the emergency department (ED). Deep learning technology can assist in interpreting non-enhanced brain CT scans, but its real-world impact on clinical decision-making is uncertain. This study assessed a deep learning-based intracranial hemorrhage detection algorithm (DLHD) in a simulated clinical environment with ten emergency medical professionals from a tertiary hospital's ED. The participants reviewed CT scans with clinical information in two steps: without and with DLHD. Diagnostic performance was measured, including sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve. Consistency in clinical decision-making was evaluated using the kappa statistic. The results demonstrated that DLHD minimally affected experienced participants' diagnostic performance and decision-making. In contrast, inexperienced participants exhibited significantly increased sensitivity (59.33-72.67%, p < 0.001) and decreased specificity (65.49-53.73%, p < 0.001) with the algorithm. Clinical decision-making consistency was moderate among inexperienced professionals (k = 0.425) and higher among experienced ones (k = 0.738). Inexperienced participants changed their decisions more frequently, mainly due to the algorithm's false positives. The study highlights the need for thorough evaluation and careful integration of deep learning tools into clinical workflows, especially for less experienced professionals.

摘要

颅内出血是急诊科(ED)需要迅速准确诊断的危急情况。深度学习技术可以辅助解读非增强脑 CT 扫描,但它对临床决策的实际影响尚不确定。本研究在一家三级医院 ED 的十名急诊医学专业人员模拟的临床环境中评估了一种基于深度学习的颅内出血检测算法(DLHD)。参与者分两步查看带有临床信息的 CT 扫描:无和有 DLHD。通过灵敏度、特异性、准确性和受试者工作特征曲线下面积来衡量诊断性能。使用 Kappa 统计评估临床决策的一致性。结果表明,DLHD 对有经验的参与者的诊断性能和决策影响极小。相比之下,经验不足的参与者使用该算法后,灵敏度显著提高(59.33-72.67%,p<0.001),特异性显著降低(65.49-53.73%,p<0.001)。经验不足的专业人员的临床决策一致性为中等(k=0.425),而经验丰富的专业人员的一致性更高(k=0.738)。经验不足的参与者更频繁地改变决策,主要是因为算法的假阳性。该研究强调需要对深度学习工具进行彻底评估,并谨慎地将其整合到临床工作流程中,尤其是对于经验不足的专业人员。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b5d/11436911/7a85a9181887/41598_2024_73589_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验