Suppr超能文献

SAMA:一种利用基因和CT数据进行非小细胞肺癌准确复发预测的自注意力与互注意力网络。

SAMA: A Self-and-Mutual Attention Network for Accurate Recurrence Prediction of Non-Small Cell Lung Cancer Using Genetic and CT Data.

作者信息

Ai Yang, Liu Jing, Li Yinhao, Wang Fang, Du Xiuju, Jain Rahul Kumar, Lin Lanfen, Chen Yen-Wei

出版信息

IEEE J Biomed Health Inform. 2025 May;29(5):3220-3233. doi: 10.1109/JBHI.2024.3471194. Epub 2025 May 6.

Abstract

Accurate preoperative recurrence prediction for non-small cell lung cancer (NSCLC) is a challenging issue in the medical field. Existing studies primarily conduct image and molecular analyses independently or directly fuse multimodal information through radiomics and genomics, which fail to fully exploit and effectively utilize the highly heterogeneous cross-modal information at different levels and model the complex relationships between modalities, resulting in poor fusion performance and becoming the bottleneck of precise recurrence prediction. To address these limitations, we propose a novel unified framework, the Self-and-Mutual Attention (SAMA) Network, designed to efficiently fuse and utilize macroscopic CT images and microscopic gene data for precise NSCLC recurrence prediction, integrating handcrafted features, deep features, and gene features. Specifically, we design a Self-and-Mutual Attention Module that performs three-stage fusion: the self-enhancement stage enhances modality-specific features; the gene-guided and CT-guided cross-modality fusion stages perform bidirectional cross-guidance on the self-enhanced features, complementing and refining each modality, enhancing heterogeneous feature expression; and the optimized feature aggregation stage ensures the refined interactive features for precise prediction. Extensive experiments on both publicly available datasets from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) demonstrate that our method achieves state-of-the-art performance and exhibits broad applicability to various cancers.

摘要

准确预测非小细胞肺癌(NSCLC)的术前复发情况是医学领域一个具有挑战性的问题。现有研究主要独立进行图像和分子分析,或者通过放射组学和基因组学直接融合多模态信息,未能充分挖掘和有效利用不同层面高度异质的跨模态信息,也无法对模态间的复杂关系进行建模,导致融合性能不佳,成为精确复发预测的瓶颈。为解决这些局限性,我们提出了一种新颖的统一框架——自互注意力(SAMA)网络,旨在有效融合和利用宏观CT图像与微观基因数据,以实现精确的NSCLC复发预测,该框架整合了手工特征、深度特征和基因特征。具体而言,我们设计了一个自互注意力模块,其执行三阶段融合:自增强阶段增强特定模态特征;基因引导和CT引导的跨模态融合阶段对自增强特征进行双向交叉引导,对每个模态进行补充和细化,增强异质特征表达;优化特征聚合阶段确保细化后的交互特征用于精确预测。在来自癌症影像存档(TCIA)和癌症基因组图谱(TCGA)的公开可用数据集上进行了大量实验,结果表明我们的方法达到了当前最优性能,并对各种癌症具有广泛适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验