Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia.
Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia.
NPJ Biofilms Microbiomes. 2024 Sep 30;10(1):95. doi: 10.1038/s41522-024-00570-0.
Life-threatening Leptospira interrogans navigate a dual existence: surviving in the environment and infecting mammalian hosts. Biofilm formation is presumably an important survival strategy to achieve this process. Understanding the relation between biofilm and virulence might improve our comprehension of leptospirosis epidemiology. Our study focused on elucidating Leptospira's adaptations and regulations involved in such complex microenvironments. To determine the transcriptional profile of Leptospira in biofilm, we compared the transcriptomes in late biofilms and in exponential planktonic cultures. While genes for motility, energy production, and metabolism were downregulated, those governing general stress response, defense against metal stress, and redox homeostasis showed a significant upsurge, hinting at a tailored defensive strategy against stress. Further, despite a reduced metabolic state, biofilm disruption swiftly restored metabolic activity. Crucially, bacteria in late biofilms or resulting from biofilm disruption retained virulence in an animal model. In summary, our study highlights Leptospira's adaptive equilibrium in biofilms: minimizing energy expenditure, potentially aiding in withstanding stresses while maintaining pathogenicity. These insights are important for explaining the survival strategies of Leptospira, revealing that a biofilm lifestyle may confer an advantage in maintaining virulence, an understanding essential for managing leptospirosis across both environmental and mammalian reservoirs.
在环境中存活并感染哺乳动物宿主。生物膜的形成可能是实现这一过程的重要生存策略。了解生物膜与毒力之间的关系可能有助于我们理解钩端螺旋体病的流行病学。我们的研究集中于阐明钩端螺旋体在这种复杂微环境中的适应和调节。为了确定生物膜中钩端螺旋体的转录谱,我们比较了晚期生物膜和指数期浮游培养物中的转录组。虽然运动、能量产生和代谢相关基因下调,但普遍应激反应、金属应激防御和氧化还原稳态调节基因显著上调,暗示了针对应激的定制防御策略。此外,尽管代谢状态降低,但生物膜破坏能迅速恢复代谢活性。至关重要的是,晚期生物膜中的细菌或生物膜破坏产生的细菌在动物模型中仍保持毒力。总之,我们的研究强调了钩端螺旋体在生物膜中的适应平衡:最大限度地减少能量消耗,可能有助于在维持致病性的同时耐受应激。这些见解对于解释钩端螺旋体的生存策略非常重要,表明生物膜生活方式可能在维持毒力方面具有优势,这对于在环境和哺乳动物两个宿主库中管理钩端螺旋体病至关重要。