Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
Nanoscale. 2024 Oct 24;16(41):19192-19206. doi: 10.1039/d4nr03055a.
An ideal sensor capable of quantifying analytes in minuscule sample volumes represents a significant technological advancement. Plasmonic nanoparticles integrated with optical dark-field spectroscopy have reached this capability, demonstrating versatility and expanding applicability across and subjects. This review underscores the applicability of optical dark-field spectroscopy with single plasmonic nanoparticles to elucidate a wide range of biomolecular characteristics, including binding constants, molecular dynamics, distances, and forces, as well as recording cell communication signals. Perspectives highlight the potential for the development of implantable nanosensors for metabolite detection in animal models, illustrating the technique's efficacy without the need for labeling molecules. In summary, this review aims to consolidate knowledge of this adaptable and robust technique for decoding molecular biological phenomena within the nano- and bio-scientific community.
一种能够在微小样本量中定量分析分析物的理想传感器代表了一项重大的技术进步。等离子体纳米粒子与光学暗场光谱学相结合已经实现了这一能力,展示了多功能性,并在和领域扩展了适用性。本综述强调了将单个等离子体纳米粒子与光学暗场光谱学相结合来阐明广泛的生物分子特性的适用性,包括结合常数、分子动力学、距离和力,以及记录细胞通信信号。研究展望强调了为在动物模型中检测代谢物而开发植入式纳米传感器的潜力,展示了该技术在无需标记分子的情况下的功效。总之,本综述旨在为纳米和生物科学界的分子生物学现象解码整合这种适应性强、稳健的技术知识。