Suppr超能文献

非高斯飞行时间内核在超快正电子发射断层扫描仪蒙特卡罗模拟数据图像重建中的应用。

Use of non-Gaussian time-of-flight kernels for image reconstruction of Monte Carlo simulated data of ultra-fast PET scanners.

作者信息

Efthimiou Nikos, Thielemans Kris, Emond Elise, Cawthorne Chris, Archibald Stephen J, Tsoumpas Charalampos

机构信息

PET Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Rd, Hull, HU6 7RX, UK.

Biomedical Imaging Science Department, School of Medicine, University of Leeds, Leeds, UK.

出版信息

EJNMMI Phys. 2020 Jun 19;7(1):42. doi: 10.1186/s40658-020-00309-8.

Abstract

INTRODUCTION

Time-of-flight (TOF) positron emission tomography (PET) scanners can provide significant benefits by improving the noise properties of reconstructed images. In order to achieve this, the timing response of the scanner needs to be modelled as part of the reconstruction process. This is currently achieved using Gaussian TOF kernels. However, the timing measurements do not necessarily follow a Gaussian distribution. In ultra-fast timing resolutions, the depth of interaction of the γ-photon and the photon travel spread (PTS) in the crystal volume become increasingly significant factors for the timing performance. The PTS of a single photon can be approximated better by a truncated exponential distribution. Therefore, we computed the corresponding TOF kernel as a modified Laplace distribution for long crystals. The obtained (CTR) kernels could be more appropriate to model the joint probability of the two in-coincidenceγ-photons. In this paper, we investigate the impact of using a CTR kernel vs. Gaussian kernels in TOF reconstruction using Monte Carlo generated data.

MATERIALS AND METHODS

The geometry and physics of a PET scanner with two timing configurations, (a) idealised timing resolution, in which only the PTS contributed in the CTR, and (b) with a range of ultra-fast timings, were simulated. In order to assess the role of the crystal thickness, different crystal lengths were considered. The evaluation took place in terms of Kullback-Leibler (K-L) distance between the proposed model and the simulated timing response, contrast recovery (CRC) and spatial resolution. The reconstructions were performed using STIR image reconstruction toolbox.

RESULTS

Results for the idealised scanner showed that the CTR kernel was in excellent agreement with the simulated time differences. In terms of K-L distance outperformed the a fitted normal distribution for all tested crystal sizes. In the case of the ultra-fast configurations, a convolution kernel between the CTR and a Gaussian showed the best agreement with the simulated data below 40 ps timing resolution. In terms of CRC, the CTR kernel demonstrated improvements, with values that ranged up to 3.8% better CRC for the thickest crystal. In terms of spatial resolution, evaluated at the 60th iteration, the use of CTR kernel showed a modest improvement of the peek-to-valley ratios up to 1% for the 10-mm crystal, while for larger crystals, a clear trend was not observed. In addition, we showed that edge artefacts can appear in the reconstructed images when the timing kernel used for the reconstruction is not carefully optimised. Further iterations, can help improve the edge artefacts.

摘要

引言

飞行时间(TOF)正电子发射断层扫描(PET)扫描仪可通过改善重建图像的噪声特性带来显著益处。为实现这一点,扫描仪的定时响应需要在重建过程中进行建模。目前这是通过高斯TOF核来实现的。然而,定时测量结果不一定遵循高斯分布。在超快速定时分辨率下,γ光子的相互作用深度以及晶体体积内的光子传播扩散(PTS)对定时性能的影响越来越显著。单个光子的PTS用截断指数分布能更好地近似。因此,我们针对长晶体计算了相应的作为修正拉普拉斯分布的TOF核。所得到的(CTR)核可能更适合对两个符合γ光子的联合概率进行建模。在本文中,我们使用蒙特卡罗生成的数据研究了在TOF重建中使用CTR核与高斯核的影响。

材料与方法

对具有两种定时配置的PET扫描仪的几何结构和物理特性进行了模拟,(a)理想化定时分辨率,其中只有PTS对CTR有贡献,(b)具有一系列超快速定时。为评估晶体厚度的作用,考虑了不同的晶体长度。评估是根据所提出模型与模拟定时响应之间的库尔贝克 - 莱布勒(K - L)距离、对比度恢复(CRC)和空间分辨率进行的。重建使用STIR图像重建工具箱进行。

结果

理想化扫描仪的结果表明,CTR核与模拟时间差非常吻合。就K - L距离而言,在所有测试的晶体尺寸下都优于拟合的正态分布。在超快速配置的情况下,CTR核与高斯核之间的卷积核在定时分辨率低于40 ps时与模拟数据的吻合度最佳。就CRC而言,CTR核表现出改进,对于最厚的晶体,CRC值提高了高达3.8%。就空间分辨率而言,在第60次迭代时进行评估,对于10毫米的晶体,使用CTR核使峰谷比适度提高了1%,而对于更大的晶体,未观察到明显趋势。此外,我们表明当用于重建的定时核未仔细优化时,重建图像中可能会出现边缘伪影。进一步的迭代有助于改善边缘伪影。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验