文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

添加锌掺杂生物活性玻璃粉末的电纺聚己内酯生物支架的体外评价

In Vitro Evaluation of Electrospun PCL Bioscaffold with Zinc-Doped Bioactive Glass Powder Addition.

作者信息

Chen Ya-Yi, Chiou Yuh-Jing, Chang Pei-Jung, Chang Wei-Min, Yeh Yu-Cheng, Chen Chin-Yi, Chang Yu-Kang, Lin Chung-Kwei

机构信息

Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.

Department of Stomatology, Tung's Taichung Metro Harbor Hospital, Taichung 435, Taiwan.

出版信息

Polymers (Basel). 2024 Oct 4;16(19):2811. doi: 10.3390/polym16192811.


DOI:10.3390/polym16192811
PMID:39408521
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11478473/
Abstract

Preparing electrospun fibers by applying a potential difference between a polymeric solution and a contacting substrate is increasingly attracting attention in tissue engineering applications. Among the numerous polymers, polycaprolactone (PCL) bioscaffold has been widely investigated due to its biocompatibility and biodegradability. Bioactive powder can be added to further improve its performance. In the present study, bioactive glass powder modified by adding 0-6 wt.% antibacterial zinc element (coded as ZBG) was prepared through the sol-gel process. Furthermore, PCL bioscaffolds with various ZBG additions were prepared using the electrospinning technique. The zinc-doped bioactive glass powder and electrospun PCL/ZBG bioscaffolds were evaluated using scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy to determine their structural properties. Additionally, in vitro bioactivity, biocompatibility and antibacterial performance were investigated. Experimental results showed that sol-gelled ZBG powder possessed superior bioactivity and 0.8 g ZBG was the optimal addition to prepare PCL/ZBG bioscaffolds with. All the electrospun PCL/ZBG bioscaffolds were biocompatible and their antibacterial performance against two strains (SA133 and Newman) improved with increasing zinc concentration. Electrospun PCL/ZBG bioscaffolds exhibited excellent bioactivity and have great potential for biomedical application.

摘要

通过在聚合物溶液和接触基底之间施加电势差来制备电纺纤维,在组织工程应用中越来越受到关注。在众多聚合物中,聚己内酯(PCL)生物支架因其生物相容性和生物降解性而受到广泛研究。可以添加生物活性粉末以进一步改善其性能。在本研究中,通过溶胶-凝胶法制备了添加0-6 wt.%抗菌锌元素改性的生物活性玻璃粉末(编码为ZBG)。此外,采用电纺丝技术制备了添加不同量ZBG的PCL生物支架。使用扫描电子显微镜、X射线衍射和傅里叶变换红外光谱对掺锌生物活性玻璃粉末和电纺PCL/ZBG生物支架进行了评估,以确定它们的结构特性。此外,还研究了其体外生物活性、生物相容性和抗菌性能。实验结果表明,溶胶凝胶法制备的ZBG粉末具有优异的生物活性,0.8 g ZBG是制备PCL/ZBG生物支架的最佳添加量。所有电纺PCL/ZBG生物支架均具有生物相容性,并且它们对两种菌株(SA133和Newman)的抗菌性能随着锌浓度的增加而提高。电纺PCL/ZBG生物支架表现出优异的生物活性,在生物医学应用方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/e67ae26201c7/polymers-16-02811-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/8591f62096ab/polymers-16-02811-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/96dc94761d85/polymers-16-02811-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/17eb8b016270/polymers-16-02811-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/64eb7b9a7849/polymers-16-02811-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/3dd3b458182b/polymers-16-02811-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/ed6f9256196c/polymers-16-02811-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/b5186e7373e8/polymers-16-02811-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/2cfd06bc75ba/polymers-16-02811-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/28b44d8b0a96/polymers-16-02811-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/577ccd5eb0e5/polymers-16-02811-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/8de132b7c2b2/polymers-16-02811-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/a4e63c9e5bc8/polymers-16-02811-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/e67ae26201c7/polymers-16-02811-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/8591f62096ab/polymers-16-02811-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/96dc94761d85/polymers-16-02811-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/17eb8b016270/polymers-16-02811-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/64eb7b9a7849/polymers-16-02811-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/3dd3b458182b/polymers-16-02811-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/ed6f9256196c/polymers-16-02811-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/b5186e7373e8/polymers-16-02811-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/2cfd06bc75ba/polymers-16-02811-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/28b44d8b0a96/polymers-16-02811-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/577ccd5eb0e5/polymers-16-02811-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/8de132b7c2b2/polymers-16-02811-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/a4e63c9e5bc8/polymers-16-02811-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a24f/11478473/e67ae26201c7/polymers-16-02811-g013.jpg

相似文献

[1]
In Vitro Evaluation of Electrospun PCL Bioscaffold with Zinc-Doped Bioactive Glass Powder Addition.

Polymers (Basel). 2024-10-4

[2]
In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder.

Biomed Res Int. 2014

[3]
Electrospun Polycaprolactone Fibrous Membranes Containing Ag, TiO₂ and Na₂Ti₆O Particles for Potential Use in Bone Regeneration.

Membranes (Basel). 2019-1-10

[4]
Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive.

Polymers (Basel). 2019-10-27

[5]
Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.

Langmuir. 2010-11-4

[6]
Poly(ε-caprolactone)/bioactive glass composite electrospun fibers for tissue engineering applications.

J Biomed Mater Res A. 2023-11

[7]
Electrospun PCL/PGS Composite Fibers Incorporating Bioactive Glass Particles for Soft Tissue Engineering Applications.

Nanomaterials (Basel). 2020-5-19

[8]
Antibacterial and Bioactive Surface Modifications of Titanium Implants by PCL/TiO₂ Nanocomposite Coatings.

Nanomaterials (Basel). 2018-10-20

[9]
Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering.

J Mater Sci Mater Med. 2021-8-28

[10]
Single-step, acid-based fabrication of homogeneous gelatin-polycaprolactone fibrillar scaffolds intended for skin tissue engineering.

Biomed Mater. 2020-3-2

引用本文的文献

[1]
Early Biological Response to Poly(ε-caprolactone) PCL-Bioactive Glass Composites Obtained by 3D Printing as Bone Substitutes.

Polymers (Basel). 2025-8-15

[2]
PVP as an Oxygen Vacancy-Inducing Agent in the Development of Black 45S5 Bioactive Glass Fibrous Scaffolds Doped with Zn and Mg Using A-HSBS.

Materials (Basel). 2025-3-18

本文引用的文献

[1]
Solvent system effects on the physical and mechanical properties of electrospun Poly(ε-caprolactone) scaffolds for in vitro lung models.

J Mech Behav Biomed Mater. 2022-12

[2]
Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants.

Mater Today Bio. 2022-8-19

[3]
Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization.

RSC Adv. 2019-8-15

[4]
Micrococcal Nuclease stimulates Biofilm Formation in a Murine Implant Infection Model.

Front Cell Infect Microbiol. 2021

[5]
Nanocomposite electrospun fibers of poly(ε-caprolactone)/bioactive glass with shape memory properties.

Bioact Mater. 2021-9-23

[6]
The efficiency of PCL/HAp electrospun nanofibers in bone regeneration: a review.

J Med Eng Technol. 2021-10

[7]
An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinning.

Mater Sci Eng C Mater Biol Appl. 2021-5

[8]
Mesoporous Properties of Bioactive Glass Synthesized by Spray Pyrolysis with Various Polyethylene Glycol and Acid Additions.

Polymers (Basel). 2021-2-18

[9]
Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells.

J Mater Chem B. 2013-6-7

[10]
Multifunctional zinc ion doped sol - gel derived mesoporous bioactive glass nanoparticles for biomedical applications.

Bioact Mater. 2019-10-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索