Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia.
Microb Genom. 2024 Oct;10(10). doi: 10.1099/mgen.0.001294.
Interpreting the phenotypes of alleles in genomes is complex. Whilst all strains are expected to carry a chromosomal copy conferring resistance to ampicillin, they may also carry mutations in chromosomal alleles or additional plasmid-borne alleles that have extended-spectrum β-lactamase (ESBL) activity and/or β-lactamase inhibitor (BLI) resistance activity. In addition, the role of individual mutations/a changes is not completely documented or understood. This has led to confusion in the literature and in antimicrobial resistance (AMR) gene databases [e.g. the National Center for Biotechnology Information (NCBI) Reference Gene Catalog and the β-lactamase database (BLDB)] over the specific functionality of individual sulfhydryl variable (SHV) protein variants. Therefore, the identification of ESBL-producing strains from genome data is complicated. Here, we reviewed the experimental evidence for the expansion of SHV enzyme function associated with specific aa substitutions. We then systematically assigned SHV alleles to functional classes (WT, ESBL and BLI resistant) based on the presence of these mutations. This resulted in the re-classification of 37 SHV alleles compared with the current assignments in the NCBI's Reference Gene Catalog and/or BLDB (21 to WT, 12 to ESBL and 4 to BLI resistant). Phylogenetic and comparative genomic analyses support that (i) SHV-1 (encoded by ) is the ancestral chromosomal variant, (ii) ESBL- and BLI-resistant variants have evolved multiple times through parallel substitution mutations, (iii) ESBL variants are mostly mobilized to plasmids and (iv) BLI-resistant variants mostly result from mutations in chromosomal . We used matched genome-phenotype data from the KlebNET-GSP AMR Genotype-Phenotype Group to identify 3999 . isolates carrying one or more alleles but no other acquired β-lactamases to assess genotype-phenotype relationships for . This collection includes human, animal and environmental isolates collected between 2001 and 2021 from 24 countries. Our analysis supports that mutations at Ambler sites 238 and 179 confer ESBL activity, whilst most omega-loop substitutions do not. Our data also provide support for the WT assignment of 67 protein variants, including 8 that were noted in public databases as ESBL. These eight variants were reclassified as WT because they lack ESBL-associated mutations, and our phenotype data support susceptibility to third-generation cephalosporins (SHV-27, SHV-38, SHV-40, SHV-41, SHV-42, SHV-65, SHV-164 and SHV-187). The approach and results outlined here have been implemented in Kleborate v2.4.1 (a software tool for genotyping ), whereby known and novel alleles are classified based on causative mutations. Kleborate v2.4.1 was updated to include ten novel protein variants from the KlebNET-GSP dataset and all alleles in public databases as of November 2023. This study demonstrates the power of sharing AMR phenotypes alongside genome data to improve the understanding of resistance mechanisms.
解释 基因组中 等位基因的表型非常复杂。虽然所有菌株都有望携带赋予氨苄青霉素抗性的染色体拷贝,但它们也可能携带染色体 等位基因或额外的质粒携带 等位基因的突变,这些突变具有扩展谱β-内酰胺酶(ESBL)活性和/或β-内酰胺酶抑制剂(BLI)抗性活性。此外,个别突变/变化的作用尚未完全记录或理解。这导致文献和抗菌药物耐药性(AMR)基因数据库[例如,国家生物技术信息中心(NCBI)参考基因目录和β-内酰胺酶数据库(BLDB)]中对个别巯基可变(SHV)蛋白变体的特定功能产生混淆。因此,从 基因组数据中鉴定产 ESBL 菌株变得复杂。在这里,我们回顾了与特定 aa 取代相关的 SHV 酶功能扩展的实验证据。然后,我们根据这些突变的存在,将 SHV 等位基因系统地分配到功能类别(WT、ESBL 和 BLI 抗性)中。与 NCBI 的参考基因目录和/或 BLDB 中的当前分配相比,这导致 37 个 SHV 等位基因的重新分类(21 个到 WT,12 个到 ESBL,4 个到 BLI 抗性)。系统发育和比较基因组分析支持:(i)SHV-1(由 编码)是染色体的原始变体,(ii)ESBL 和 BLI 抗性变体通过平行取代突变多次进化,(iii)ESBL 变体主要被移动到质粒上,(iv)BLI 抗性变体主要由染色体 中的突变引起。我们使用来自 KlebNET-GSP AMR 基因型-表型组的匹配基因组-表型数据,从 2001 年至 2021 年间从 24 个国家收集的人类、动物和环境 . 分离株中鉴定出携带一个或多个 等位基因但不携带其他获得性β-内酰胺酶的 3999 个. ,以评估. 基因型-表型关系。该集合包括 2001 年至 2021 年间从 24 个国家收集的人类、动物和环境 . 分离株。我们的分析支持在 238 和 179 号位置的突变赋予 ESBL 活性,而大多数 ω-环取代则没有。我们的数据还为 67 种蛋白质变体的 WT 分配提供了支持,包括在公共数据库中被标记为 ESBL 的 8 种变体。这 8 个变体被重新分类为 WT,因为它们缺乏与 ESBL 相关的突变,并且我们的表型数据支持对第三代头孢菌素(SHV-27、SHV-38、SHV-40、SHV-41、SHV-42、SHV-65、SHV-164 和 SHV-187)的敏感性。这里概述的方法和结果已在 Kleborate v2.4.1 中实施(一种用于基因分型的软件工具),其中已知和新的 等位基因根据致病突变进行分类。Kleborate v2.4.1 已更新,包含来自 KlebNET-GSP 数据集的十个新的蛋白质变体和截至 2023 年 11 月所有公共数据库中的所有等位基因。这项研究表明,分享 AMR 表型和基因组数据以提高对耐药机制的理解的力量。