Imagen Technologies, 224 W 35th St Ste 500, New York, NY, 10001, USA.
Department of Radiology, Stanford University School of Medicine, 453 Quarry Rd, Palo Alto, CA, 94305, USA.
Sci Rep. 2024 Oct 24;14(1):25151. doi: 10.1038/s41598-024-76608-2.
Chest X-rays are the most commonly performed medical imaging exam, yet they are often misinterpreted by physicians. Here, we present an FDA-cleared, artificial intelligence (AI) system which uses a deep learning algorithm to assist physicians in the comprehensive detection and localization of abnormalities on chest X-rays. We trained and tested the AI system on a large dataset, assessed generalizability on publicly available data, and evaluated radiologist and non-radiologist physician accuracy when unaided and aided by the AI system. The AI system accurately detected chest X-ray abnormalities (AUC: 0.976, 95% bootstrap CI: 0.975, 0.976) and generalized to a publicly available dataset (AUC: 0.975, 95% bootstrap CI: 0.971, 0.978). Physicians showed significant improvements in detecting abnormalities on chest X-rays when aided by the AI system compared to when unaided (difference in AUC: 0.101, p < 0.001). Non-radiologist physicians detected abnormalities on chest X-ray exams as accurately as radiologists when aided by the AI system and were faster at evaluating chest X-rays when aided compared to unaided. Together, these results show that the AI system is accurate and reduces physician errors in chest X-ray evaluation, which highlights the potential of AI systems to improve access to fast, high-quality radiograph interpretation.
胸部 X 光检查是最常见的医学影像检查,但医生经常对其做出错误的解读。在这里,我们展示了一个经过美国食品药品监督管理局(FDA)批准的人工智能(AI)系统,该系统使用深度学习算法来帮助医生全面检测和定位胸部 X 光片上的异常。我们在一个大型数据集上对 AI 系统进行了训练和测试,评估了其在公开可用数据上的泛化能力,并评估了放射科医生和非放射科医生在没有和有 AI 系统辅助时的准确性。AI 系统能够准确地检测到胸部 X 光异常(AUC:0.976,95% 自举置信区间:0.975,0.976),并在公开数据集上具有良好的泛化能力(AUC:0.975,95% 自举置信区间:0.971,0.978)。与没有 AI 系统辅助时相比,医生在使用 AI 系统辅助时在检测胸部 X 光异常方面有显著提高(AUC 差异:0.101,p < 0.001)。非放射科医生在使用 AI 系统辅助时,在检测胸部 X 光异常方面与放射科医生一样准确,并且在有 AI 系统辅助时比没有 AI 系统辅助时更快地评估胸部 X 光。综上所述,这些结果表明,该 AI 系统准确且减少了医生在胸部 X 光评估中的错误,这突显了人工智能系统在提高快速、高质量放射图像解读方面的潜力。