Suppr超能文献

深度学习提高了医生在胸部 X 光片中全面检测异常的准确性。

Deep learning improves physician accuracy in the comprehensive detection of abnormalities on chest X-rays.

机构信息

Imagen Technologies, 224 W 35th St Ste 500, New York, NY, 10001, USA.

Department of Radiology, Stanford University School of Medicine, 453 Quarry Rd, Palo Alto, CA, 94305, USA.

出版信息

Sci Rep. 2024 Oct 24;14(1):25151. doi: 10.1038/s41598-024-76608-2.

Abstract

Chest X-rays are the most commonly performed medical imaging exam, yet they are often misinterpreted by physicians. Here, we present an FDA-cleared, artificial intelligence (AI) system which uses a deep learning algorithm to assist physicians in the comprehensive detection and localization of abnormalities on chest X-rays. We trained and tested the AI system on a large dataset, assessed generalizability on publicly available data, and evaluated radiologist and non-radiologist physician accuracy when unaided and aided by the AI system. The AI system accurately detected chest X-ray abnormalities (AUC: 0.976, 95% bootstrap CI: 0.975, 0.976) and generalized to a publicly available dataset (AUC: 0.975, 95% bootstrap CI: 0.971, 0.978). Physicians showed significant improvements in detecting abnormalities on chest X-rays when aided by the AI system compared to when unaided (difference in AUC: 0.101, p < 0.001). Non-radiologist physicians detected abnormalities on chest X-ray exams as accurately as radiologists when aided by the AI system and were faster at evaluating chest X-rays when aided compared to unaided. Together, these results show that the AI system is accurate and reduces physician errors in chest X-ray evaluation, which highlights the potential of AI systems to improve access to fast, high-quality radiograph interpretation.

摘要

胸部 X 光检查是最常见的医学影像检查,但医生经常对其做出错误的解读。在这里,我们展示了一个经过美国食品药品监督管理局(FDA)批准的人工智能(AI)系统,该系统使用深度学习算法来帮助医生全面检测和定位胸部 X 光片上的异常。我们在一个大型数据集上对 AI 系统进行了训练和测试,评估了其在公开可用数据上的泛化能力,并评估了放射科医生和非放射科医生在没有和有 AI 系统辅助时的准确性。AI 系统能够准确地检测到胸部 X 光异常(AUC:0.976,95% 自举置信区间:0.975,0.976),并在公开数据集上具有良好的泛化能力(AUC:0.975,95% 自举置信区间:0.971,0.978)。与没有 AI 系统辅助时相比,医生在使用 AI 系统辅助时在检测胸部 X 光异常方面有显著提高(AUC 差异:0.101,p < 0.001)。非放射科医生在使用 AI 系统辅助时,在检测胸部 X 光异常方面与放射科医生一样准确,并且在有 AI 系统辅助时比没有 AI 系统辅助时更快地评估胸部 X 光。综上所述,这些结果表明,该 AI 系统准确且减少了医生在胸部 X 光评估中的错误,这突显了人工智能系统在提高快速、高质量放射图像解读方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbf1/11502915/de3e3dee8a9c/41598_2024_76608_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验