Nargesi Arash A, Adejumo Philip, Dhingra Lovedeep Singh, Rosand Benjamin, Hengartner Astrid, Coppi Andreas, Benigeri Simon, Sen Sounok, Ahmad Tariq, Nadkarni Girish N, Lin Zhenqiu, Ahmad Faraz S, Krumholz Harlan M, Khera Rohan
Heart and Vascular Center, Brigham and Women's Hospital, Harvard School of Medicine, Boston, Massachusetts, USA.
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, USA.
JACC Heart Fail. 2025 Jan;13(1):75-87. doi: 10.1016/j.jchf.2024.08.012. Epub 2024 Oct 23.
The lack of automated tools for measuring care quality limits the implementation of a national program to assess guideline-directed care in heart failure with reduced ejection fraction (HFrEF).
The authors aimed to automate the identification of patients with HFrEF at hospital discharge, an opportunity to evaluate and improve the quality of care.
The authors developed a novel deep-learning language model for identifying patients with HFrEF from discharge summaries of hospitalizations with heart failure at Yale New Haven Hospital during 2015 to 2019. HFrEF was defined by left ventricular ejection fraction <40% on antecedent echocardiography. The authors externally validated the model at Northwestern Medicine, community hospitals of Yale, and the MIMIC-III (Medical Information Mart for Intensive Care III) database.
A total of 13,251 notes from 5,392 unique individuals (age 73 ± 14 years, 48% women), including 2,487 patients with HFrEF (46.1%), were used for model development (train/held-out: 70%/30%). The model achieved an area under receiver-operating characteristic curve (AUROC) of 0.97 and area under precision recall curve (AUPRC) of 0.97 in detecting HFrEF on the held-out set. The model had high performance in identifying HFrEF with AUROC = 0.94 and AUPRC = 0.91 on 19,242 notes from Northwestern Medicine, AUROC = 0.95 and AUPRC = 0.96 on 139 manually abstracted notes from Yale community hospitals, and AUROC = 0.91 and AUPRC = 0.92 on 146 manually reviewed notes from MIMIC-III. Model-based predictions of HFrEF corresponded to a net reclassification improvement of 60.2% ± 1.9% compared with diagnosis codes (P < 0.001).
The authors developed a language model that identifies HFrEF from clinical notes with high precision and accuracy, representing a key element in automating quality assessment for individuals with HFrEF.
缺乏用于衡量医疗质量的自动化工具限制了一项旨在评估射血分数降低的心力衰竭(HFrEF)患者指南指导治疗的国家计划的实施。
作者旨在实现出院时HFrEF患者识别的自动化,这是一个评估和改善医疗质量的契机。
作者开发了一种新型深度学习语言模型,用于从2015年至2019年耶鲁纽黑文医院心力衰竭住院患者的出院小结中识别HFrEF患者。HFrEF通过既往超声心动图检查左心室射血分数<40%来定义。作者在西北大学医学院、耶鲁社区医院以及MIMIC-III(重症监护医学信息库III)数据库对该模型进行了外部验证。
共纳入来自5392名个体(年龄73±14岁,48%为女性)的13251份记录,其中包括2487例HFrEF患者(46.1%),用于模型开发(训练集/留出集:70%/30%)。该模型在留出集上检测HFrEF时,受试者操作特征曲线下面积(AUROC)为0.97,精确召回率曲线下面积(AUPRC)为0.97。该模型在识别HFrEF方面表现出色,在西北大学医学院的19242份记录上,AUROC = 0.94,AUPRC = 0.91;在耶鲁社区医院的139份人工提取记录上,AUROC = 0.95,AUPRC = 0.96;在MIMIC-III的146份人工审核记录上,AUROC = 0.91,AUPRC = 0.92。与诊断编码相比,基于模型的HFrEF预测对应净重新分类改善率为60.2%±1.9%(P < 0.001)。
作者开发了一种语言模型,可从临床记录中高精度、准确地识别HFrEF,这是实现HFrEF患者质量评估自动化的关键要素。