Dehghan Rouzi Mohammad, Lee Myeounggon, Beom Jaewon, Bidadi Sanam, Ouattas Abderrahman, Cay Gozde, Momin Anmol, York Michele K, Kunik Mark E, Najafi Bijan
Digital Health and Access Center (DiHAC), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, 7200 Cambridge St, B01.529, Houston, TX 77030 USA.
H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX USA.
Biomed Eng Lett. 2024 Jul 27;14(6):1365-1375. doi: 10.1007/s13534-024-00410-2. eCollection 2024 Nov.
Assessing physical frailty (PF) is vital for early risk detection, tailored interventions, preventive care, and efficient healthcare planning. However, traditional PF assessments are often impractical, requiring clinic visits and significant resources. We introduce a video-based frailty meter (vFM) that utilizes machine learning (ML) to assess PF indicators from a 20 s exercise, facilitating remote and efficient healthcare planning. This study validates the vFM against a sensor-based frailty meter (sFM) through elbow flexion and extension exercises recorded via webcam and video conferencing app. We developed the vFM using Google's MediaPipe ML model to track elbow motion during a 20 s elbow flexion and extension exercise, recorded via a standard webcam. To validate vFM, 65 participants aged 20-85 performed the exercise under single-task and dual-task conditions, the latter including counting backward from a random two-digit number. We analyzed elbow angular velocity to extract frailty indicators-slowness, weakness, rigidity, exhaustion, and unsteadiness-and compared these with sFM results using intraclass correlation coefficient analysis and Bland-Altman plots. The vFM results demonstrated high precision (0.00-7.14%) and low bias (0.00-0.09%), showing excellent agreement with sFM outcomes (ICC(2,1): 0.973-0.999), unaffected by clothing color or environmental factors. The vFM offers a quick, accurate method for remote PF assessment, surpassing previous video-based frailty assessments in accuracy and environmental robustness, particularly in estimating elbow motion as a surrogate for the 'rigidity' phenotype. This innovation simplifies PF assessments for telehealth applications, promising advancements in preventive care and healthcare planning without the need for sensors or specialized infrastructure.
评估身体虚弱(PF)对于早期风险检测、个性化干预、预防保健和高效的医疗规划至关重要。然而,传统的PF评估通常不切实际,需要门诊就诊且耗费大量资源。我们引入了一种基于视频的虚弱测量仪(vFM),它利用机器学习(ML)从20秒的运动中评估PF指标,有助于实现远程且高效的医疗规划。本研究通过网络摄像头和视频会议应用程序记录的肘部屈伸运动,将vFM与基于传感器的虚弱测量仪(sFM)进行了验证。我们使用谷歌的MediaPipe ML模型开发了vFM,以跟踪通过标准网络摄像头记录的20秒肘部屈伸运动中的肘部运动。为了验证vFM,65名年龄在20 - 85岁之间的参与者在单任务和双任务条件下进行了该运动,双任务条件包括从一个随机的两位数开始倒数。我们分析了肘部角速度以提取虚弱指标——迟缓、虚弱、僵硬、疲惫和不稳定——并使用组内相关系数分析和Bland - Altman图将这些指标与sFM的结果进行比较。vFM的结果显示出高精度(0.00 - 7.14%)和低偏差(0.00 - 0.09%),与sFM的结果显示出极好的一致性(ICC(2,1): 0.973 - 0.999),不受衣服颜色或环境因素的影响。vFM提供了一种快速、准确的远程PF评估方法,在准确性和环境稳健性方面超过了以前基于视频的虚弱评估,特别是在将肘部运动估计为“僵硬”表型的替代指标方面。这一创新简化了远程医疗应用中的PF评估,有望在无需传感器或专门基础设施的情况下推动预防保健和医疗规划的进步。