Suppr超能文献

诺贝尔化学奖:人工智能在生物学领域的过去、现在与未来

The Nobel Prize in Chemistry: past, present, and future of AI in biology.

作者信息

Abriata Luciano A

机构信息

School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.

出版信息

Commun Biol. 2024 Oct 29;7(1):1409. doi: 10.1038/s42003-024-07113-5.

Abstract

The work by Hassabis and Jumper on protein structure prediction together with Baker’s supremacy in de novo protein design set the stage for a future where AI not only deciphers biology at the atomic level but also designs new molecules for biotechnology, medicine, and beyond. I provide an overview of the recent past, the present, and the future of AI in structural biology, from how it all started with the Critical Assessment of Structure Prediction (CASP) experiments and a protein engineering lab, to how the field could further evolve with AI models that eventually “understand” biology holistically.

摘要

哈萨比斯和琼珀在蛋白质结构预测方面的工作,以及贝克在从头蛋白质设计方面的卓越成就,为一个未来奠定了基础,在这个未来中,人工智能不仅能在原子层面解读生物学,还能为生物技术、医学及其他领域设计新分子。我将概述人工智能在结构生物学领域的过去、现在和未来,从它如何起源于蛋白质结构预测关键评估(CASP)实验和一个蛋白质工程实验室,到该领域如何借助最终能全面“理解”生物学的人工智能模型进一步发展。

相似文献

4
Bibliometric comparison of Nobel Prize laureates in physiology or medicine and chemistry.诺贝尔生理学或医学奖得主与化学奖得主的文献计量学比较。
Naunyn Schmiedebergs Arch Pharmacol. 2024 Sep;397(9):7169-7185. doi: 10.1007/s00210-024-03081-z. Epub 2024 Apr 23.
6
The Uncertain Role of Nominations for the Nobel Prize in Chemistry.诺贝尔奖提名在化学奖中的不确定作用。
Chemistry. 2023 Jun 27;29(36):e202203985. doi: 10.1002/chem.202203985. Epub 2023 May 19.

本文引用的文献

8
Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering.机器学习辅助酶工程面临的机遇与挑战
ACS Cent Sci. 2024 Feb 5;10(2):226-241. doi: 10.1021/acscentsci.3c01275. eCollection 2024 Feb 28.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验