Suppr超能文献

AlphaFold2 能够实现配体到单次通过受体的准确去孤儿化。

AlphaFold2 enables accurate deorphanization of ligands to single-pass receptors.

机构信息

Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biology, University of Copenhagen, Copenhagen, Denmark.

Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Cell Syst. 2024 Nov 20;15(11):1046-1060.e3. doi: 10.1016/j.cels.2024.10.004. Epub 2024 Nov 13.

Abstract

Secreted proteins play crucial roles in paracrine and endocrine signaling; however, identifying ligand-receptor interactions remains challenging. Here, we benchmarked AlphaFold2 (AF2) as a screening approach to identify extracellular ligands to single-pass transmembrane receptors. Key to the approach is the optimization of AF2 input and output for screening ligands against receptors to predict the most probable ligand-receptor interactions. The predictions were performed on ligand-receptor pairs not used for AF2 training. We demonstrate high discriminatory power and a success rate of close to 90% for known ligand-receptor pairs and 50% for a diverse set of experimentally validated interactions. Further, we show that screen accuracy does not correlate linearly with prediction of ligand-receptor interaction. These results demonstrate a proof of concept of a rapid and accurate screening platform to predict high-confidence cell-surface receptors for a diverse set of ligands by structural binding prediction, with potentially wide applicability for the understanding of cell-cell communication.

摘要

分泌蛋白在旁分泌和内分泌信号中发挥着至关重要的作用;然而,鉴定配体-受体相互作用仍然具有挑战性。在这里,我们将 AlphaFold2(AF2)作为一种筛选方法进行基准测试,以识别针对单次跨膜受体的细胞外配体。该方法的关键是优化 AF2 的输入和输出,以筛选针对受体的配体,从而预测最可能的配体-受体相互作用。预测是针对未用于 AF2 训练的配体-受体对进行的。我们证明了针对已知配体-受体对的高区分能力和接近 90%的成功率,以及针对多样化的实验验证相互作用的 50%成功率。此外,我们表明,筛选准确性与配体-受体相互作用的预测并不呈线性相关。这些结果证明了一种快速而准确的筛选平台的概念验证,该平台通过结构结合预测,针对多样化的配体预测高可信度的细胞表面受体,具有广泛的应用潜力,可用于理解细胞间通讯。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验