Karydo TherapeutiX, Inc., Kyoto, Japan.
ERATO Sato Live Bio-Forecasting Project, Kyoto, Japan.
PLoS Genet. 2024 Nov 18;20(11):e1011436. doi: 10.1371/journal.pgen.1011436. eCollection 2024 Nov.
While single-cell RNA-sequencing (scRNA-seq) is a popular method to analyze gene expression and cellular composition at single-cell resolution, it harbors shortcomings: The failure to account for cell-to-cell variations of transcriptome-size (i.e., the total number of transcripts per cell) and also cell dissociation/processing-induced cryptic gene expression. This is particularly a problem when analyzing highly heterogeneous solid tissues/organs, which requires cell dissociation for the analysis. As a result, there exists a discrepancy between bulk RNA-seq result and virtually reconstituted bulk RNA-seq result using its composite scRNA-seq data. To fix this problem, we propose a computationally calculated coefficient, "cell type-specific weighting-factor (cWF)". Here, we introduce a concept and a method of its computation and report cWFs for 76 cell-types across 10 solid organs. Their fidelity is validated by more accurate reconstitution and deconvolution of bulk RNA-seq data of diverse solid organs using the scRNA-seq data and the cWFs of their composite cells. Furthermore, we also show that cWFs effectively predict aging-progression, implicating their diagnostic applications and also their association with aging mechanism. Our study provides an important method to solve critical limitations of scRNA-seq analysis of complex solid tissues/organs. Furthermore, our findings suggest a diagnostic utility and biological significance of cWFs.
单细胞 RNA 测序 (scRNA-seq) 是一种分析单细胞分辨率下基因表达和细胞组成的常用方法,但它存在一些缺点:无法解释每个细胞中转录组大小(即每个细胞中转录本的总数)的细胞间变化,也无法解释细胞分离/处理引起的隐性基因表达。当分析高度异质的实体组织/器官时,这是一个特别的问题,因为需要对细胞进行分离才能进行分析。因此,批量 RNA-seq 结果与使用其组合 scRNA-seq 数据虚拟重建的批量 RNA-seq 结果之间存在差异。为了解决这个问题,我们提出了一个计算得出的系数,“细胞类型特异性加权因子 (cWF)”。在这里,我们介绍了这个概念和计算方法,并报告了 10 个实体器官中 76 种细胞类型的 cWF。通过使用 scRNA-seq 数据和其组合细胞的 cWF 对不同实体器官的批量 RNA-seq 数据进行更准确的重建和去卷积,验证了它们的保真度。此外,我们还表明 cWF 可有效预测衰老进展,暗示了它们的诊断应用及其与衰老机制的关联。我们的研究提供了一种解决复杂实体组织/器官 scRNA-seq 分析关键限制的重要方法。此外,我们的研究结果表明 cWF 具有诊断效用和生物学意义。