Tasnim Zerin Jahan, Nasrin R
Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
Heliyon. 2024 Nov 2;10(21):e40109. doi: 10.1016/j.heliyon.2024.e40109. eCollection 2024 Nov 15.
The primary focus of this study is to analyze comparative heat transfer in a two-dimensional (2D) multilayered human skin using thermal waves and Pennes' bioheat transfer models. The model comprises the epidermis, dermis, hypodermis tissue, and inner cells, and aims to understand their response to microwave (MW) power and electromagnetic (EM) frequency. The system of equations involves EM wave frequency and bioheat equations and uses the finite element method (FEM) for solving. It encompasses a range of microwave power levels (4-16 W), frequencies (0.9-4 GHz), and exposure durations (0-180 s). It examines how MW power and frequency affect temperature predictions due to different relaxation times. The results are visually represented, illustrating microwave power dissipation, isothermal profiles within the skin tissue, temperature trends at several locations, relaxation times, specific absorption rate (SAR), and the mean surface temperature of the multilayered dermal cell. Thermal analysis shows that Pennes' equation predicts higher temperatures than the thermal wave model of bioheat transfer (TWMBT). A notable disparity in temperature evolution is observed between the two models, especially in high-frequency transient heating scenarios. The TWMBT forecasts a delay in heat transfer, offering valuable insights into the more realistic short-term thermal behavior that the classical Pennes' model fails to capture. This comparative study underscores the significance of selecting an appropriate bioheat transfer model for precise thermal analysis in biomedical applications, such as hyperthermia treatment and thermal diagnostics. The findings emphasize the potential of the TWMBT to enhance the accuracy of thermal treatments in clinical settings.
本研究的主要重点是使用热波和彭尼斯生物热传递模型分析二维(2D)多层人体皮肤中的比较热传递。该模型包括表皮、真皮、皮下组织和内部细胞,旨在了解它们对微波(MW)功率和电磁(EM)频率的响应。方程组涉及电磁波频率和生物热方程,并使用有限元方法(FEM)求解。它涵盖了一系列微波功率水平(4 - 16瓦)、频率(0.9 - 4吉赫兹)和暴露持续时间(0 - 180秒)。它研究了微波功率和频率如何由于不同的弛豫时间而影响温度预测。结果以可视化方式呈现,展示了微波功率耗散、皮肤组织内的等温线、几个位置的温度趋势、弛豫时间、比吸收率(SAR)以及多层真皮细胞的平均表面温度。热分析表明,彭尼斯方程预测的温度高于生物热传递热波模型(TWMBT)。在两种模型之间观察到温度演变的显著差异,特别是在高频瞬态加热情况下。TWMBT预测了热传递的延迟,为经典彭尼斯模型未能捕捉到的更现实的短期热行为提供了有价值的见解。这项比较研究强调了在生物医学应用(如热疗和热诊断)中选择合适的生物热传递模型进行精确热分析的重要性。研究结果强调了TWMBT在提高临床环境中热治疗准确性方面的潜力。