Suppr超能文献

应用舌象特征和口腔-肠道微生物群通过机器学习预测糖尿病前期和 2 型糖尿病。

Application of tongue image characteristics and oral-gut microbiota in predicting pre-diabetes and type 2 diabetes with machine learning.

机构信息

Department of College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

School of Computer Science, Fudan University, Shanghai, China.

出版信息

Front Cell Infect Microbiol. 2024 Nov 4;14:1477638. doi: 10.3389/fcimb.2024.1477638. eCollection 2024.

Abstract

BACKGROUND

This study aimed to characterize the oral and gut microbiota in prediabetes mellitus (Pre-DM) and type 2 diabetes mellitus (T2DM) patients while exploring the association between tongue manifestations and the oral-gut microbiota axis in diabetes progression.

METHODS

Participants included 30 Pre-DM patients, 37 individuals with T2DM, and 28 healthy controls. Tongue images and oral/fecal samples were analyzed using image processing and 16S rRNA sequencing. Machine learning techniques, including support vector machine (SVM), random forest, gradient boosting, adaptive boosting, and K-nearest neighbors, were applied to integrate tongue image data with microbiota profiles to construct predictive models for Pre-DM and T2DM classification.

RESULTS

Significant shifts in tongue characteristics were identified during the progression from Pre-DM to T2DM. Elevated Firmicutes levels along the oral-gut axis were associated with white greasy fur, indicative of underlying metabolic changes. An SVM-based predictive model demonstrated an accuracy of 78.9%, with an AUC of 86.9%. Notably, tongue image parameters (TB-a, perALL) and specific microbiota (, ) emerged as prominent diagnostic markers for Pre-DM and T2DM.

CONCLUSION

The integration of tongue diagnosis with microbiome analysis reveals distinct tongue features and microbial markers. This approach significantly improves the diagnostic capability for Pre-DM and T2DM.

摘要

背景

本研究旨在描述糖尿病前期(Pre-DM)和 2 型糖尿病(T2DM)患者的口腔和肠道微生物群,并探索舌象与糖尿病进展中口腔-肠道微生物群轴之间的关系。

方法

参与者包括 30 名 Pre-DM 患者、37 名 T2DM 患者和 28 名健康对照者。采用图像处理和 16S rRNA 测序分析舌象和口腔/粪便样本。应用支持向量机(SVM)、随机森林、梯度提升、自适应提升和 K-最近邻等机器学习技术,将舌象数据与微生物群谱整合,构建 Pre-DM 和 T2DM 分类的预测模型。

结果

从 Pre-DM 到 T2DM 的进展过程中,舌特征发生了显著变化。口腔-肠道轴上厚壁菌门水平的升高与白腻苔有关,表明存在潜在的代谢变化。基于 SVM 的预测模型的准确率为 78.9%,AUC 为 86.9%。值得注意的是,舌象参数(TB-a、perALL)和特定微生物(、)是 Pre-DM 和 T2DM 的显著诊断标志物。

结论

将舌诊断与微生物组分析相结合,揭示了不同的舌特征和微生物标志物。这种方法显著提高了 Pre-DM 和 T2DM 的诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53f3/11570591/702f40ccb739/fcimb-14-1477638-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验