Suppr超能文献

大肠杆菌和金黄色葡萄球菌通过相同的机制但通过不同的途径来抵抗银纳米粒子。

E. coli and S. aureus resist silver nanoparticles via an identical mechanism, but through different pathways.

机构信息

Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic.

Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Holice, Czech Republic.

出版信息

Commun Biol. 2024 Nov 21;7(1):1552. doi: 10.1038/s42003-024-07266-3.

Abstract

Nanostructured materials with antibacterial activity face the same threat as conventional antibiotics - bacterial resistance, which reduces their effectiveness. However, unlike antibiotics, research into the emergence and mechanisms of bacterial resistance to antibacterial nanomaterials is still in its early stages. Here we show how Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria develop resistance to silver nanoparticles, resulting in an increase in the minimum inhibitory concentration from 1.69 mg/L for S. aureus and 3.38 mg/L for E. coli to 54 mg/L with repeated exposure over 12 and 6 cultivation steps, respectively. The mechanism of resistance is the same for both types of bacteria and involves the aggregation of silver nanoparticles leading to the formation of black precipitates. However, the way in which Gram-positive and Gram-negative bacteria induce aggregation of silver nanoparticles is completely different. Chemical analysis of the surface of the silver precipitates shows that aggregation is triggered by flagellin production in E. coli and by bacterial biofilm formation in S. aureus. However, resistance in both types of bacteria can be overcome by using pomegranate rind extract, which inhibits both flagellin and biofilm production, or by stabilizing the silver nanoparticles by covalently binding them to a composite material containing graphene sheets, which protects the silver nanoparticles from aggregation induced by the bacterial biofilm produced by S. aureus. This research improves the understanding of bacterial resistance mechanisms to nanostructured materials, which differ from resistance mechanisms to conventional antibiotics, and provides potential strategies to combat bacterial resistance and develop more effective antimicrobial treatments.

摘要

具有抗菌活性的纳米结构材料面临着与传统抗生素相同的威胁——细菌耐药性,这会降低它们的效果。然而,与抗生素不同,对抗菌纳米材料出现细菌耐药性及其机制的研究仍处于早期阶段。在这里,我们展示了革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌如何对银纳米颗粒产生耐药性,导致最小抑菌浓度从金黄色葡萄球菌的 1.69mg/L 和大肠杆菌的 3.38mg/L 分别增加到重复暴露 12 和 6 个培养步骤后的 54mg/L。两种细菌的耐药机制相同,都涉及银纳米颗粒的聚集导致黑色沉淀物的形成。然而,革兰氏阳性菌和革兰氏阴性菌诱导银纳米颗粒聚集的方式完全不同。对银沉淀物表面的化学分析表明,大肠杆菌中鞭毛蛋白的产生和金黄色葡萄球菌中细菌生物膜的形成引发了聚集。然而,使用石榴皮提取物可以克服两种类型细菌的耐药性,石榴皮提取物可以抑制鞭毛蛋白和生物膜的产生,或者通过将银纳米颗粒共价结合到含有石墨烯片的复合材料中来稳定银纳米颗粒,从而保护银纳米颗粒免受金黄色葡萄球菌产生的细菌生物膜诱导的聚集。这项研究提高了对抗菌纳米材料细菌耐药机制的理解,这些机制与传统抗生素的耐药机制不同,并提供了潜在的策略来对抗细菌耐药性并开发更有效的抗菌治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e0e/11582817/bd356903dc33/42003_2024_7266_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验