Suppr超能文献

CorLabelNet:一种用于多标签胸部X光图像分类的综合框架,具有相关性引导的判别特征学习和过采样。

CorLabelNet: a comprehensive framework for multi-label chest X-ray image classification with correlation guided discriminant feature learning and oversampling.

作者信息

Zhang Kai, Liang Wei, Cao Peng, Mao Zhaoyang, Yang Jinzhu, Zaiane Osmar R

机构信息

Computer Science and Engineering, Northeastern University, Shenyang, China.

Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China.

出版信息

Med Biol Eng Comput. 2025 Apr;63(4):1045-1058. doi: 10.1007/s11517-024-03247-0. Epub 2024 Nov 29.

Abstract

Recent advancements in deep learning techniques have significantly improved multi-label chest X-ray (CXR) image classification for clinical diagnosis. However, most previous studies neither effectively learn label correlations nor take full advantage of them to improve multi-label classification performance. In addition, different labels of CXR images are usually severely imbalanced, resulting in the model exhibiting a bias towards the majority class. To address these challenges, we introduce a framework that not only learns label correlations but also utilizes them to guide the learning of features and the process of oversampling. In this paper, our approach incorporates self-attention to capture high-order label correlations and considers label correlations from both global and local perspectives. Then, we propose a consistency constraint and a multi-label contrastive loss to enhance feature learning. To alleviate the imbalance issue, we further propose an oversampling approach that exploits the learned label correlation to identify crucial seed samples for oversampling. Our approach repeats 5-fold cross-validation process experiments three times and achieves the best performance on both the CheXpert and ChestX-Ray14 datasets. Learning accurate label correlation is significant for multi-label classification and taking full advantage of label correlations is beneficial for discriminative feature learning and oversampling. A comparative analysis with the state-of-the-art approaches highlights the effectiveness of our proposed methods.

摘要

深度学习技术的最新进展显著改善了用于临床诊断的多标签胸部X光(CXR)图像分类。然而,大多数先前的研究既没有有效地学习标签相关性,也没有充分利用它们来提高多标签分类性能。此外,CXR图像的不同标签通常严重不平衡,导致模型对多数类表现出偏差。为了应对这些挑战,我们引入了一个框架,该框架不仅学习标签相关性,还利用它们来指导特征学习和过采样过程。在本文中,我们的方法结合了自注意力来捕捉高阶标签相关性,并从全局和局部视角考虑标签相关性。然后,我们提出了一种一致性约束和多标签对比损失来增强特征学习。为了缓解不平衡问题,我们进一步提出了一种过采样方法,该方法利用学习到的标签相关性来识别用于过采样的关键种子样本。我们的方法重复进行了三次5折交叉验证过程实验,并在CheXpert和ChestX-Ray14数据集上均取得了最佳性能。学习准确的标签相关性对于多标签分类很重要,充分利用标签相关性有利于判别性特征学习和过采样。与最先进方法的对比分析突出了我们所提出方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验